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Abstract

Identifying and estimating causal e↵ects of treatments is of significant research

interest. In doing so, similar data are oftentimes matched into one stratum,

and subsequent inferences of causality are carried out based on these strata. In

particular, when the data are from observational studies, properly matching

observations by their treatment assignment probabilities are especially impor-

tant for removing potential selection bias induced by selecting observations

that receive specific treatments in a non-randomized fashion. Therefore, it is

an important task to evaluate whether matching was done properly, that is,

whether the covariates are equally distributed in di↵erent treatment groups

given the matching information. Traditional methods of matching evaluation

involve visually investigating summary statistics, such as the standardized

mean di↵erence, by covariate, but lack uncertainty quantification of the con-

clusion and are less convenient compared to an omnibus test that checks

matching validity for all covariates one-shot. We propose a hypothesis test

that expresses treatment assignment probabilities by an adjacent category

logistic regression model and provides an omnibus test of matching for all co-

variates by testing the global null � = 0 in the language of regression models.

In this thesis, we adopt a �
2 approximation of the asymptotic distribution

of the test statistic, inspired by the Rao score test. An application of the

test indicates the matching results produced by a matching algorithm can be

further improved.
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Chapter 1

Introduction

Valid identification and estimation of causal e↵ects of treatments is a critical task in

scientific research (Holland 1986). In modern scientific research areas, when investigators

intend to discover causal relationships between events, the ideal and widely accepted

solution is to conduct randomized controlled trials (RCTs), where research investigators

have the discretion to randomly assign treatments to participants of the trial so that

all confounding factors are controlled and they may thus attribute di↵erences in the

response variable entirely to the treatment assignment. However, we do not always have

the luxury of setting up a randomized controlled trial and collecting data from it. Due

to factors such as costs and ethical concerns, we must rely on observational data instead

(Rosenbaum 2010). On the positive side, using observational data to infer causality allows

us to observe objects and events in their natural environments, which is more realistic

compared to RCTs that are set up artificially. However, one caveat that might arise

from using such observational data to make causal claims is that in a real-world scenario,

treatment assignments and the response variables may be systematically related, and

we may not have information about the mechanism behind the treatment assignments.

Consequently, without being able to control the confounders that relate to both the

treatment assignment and the response variable of interest, we may be subject to biases

in our reasoning.

For this reason, it is important to use observational data to resemble controlled tri-

als, where the pretreatment covariates in di↵erent treatment groups are roughly equally

distributed, i.e., balanced (Hansen and Bowers 2008). Rosenbaum and Rubin (1983)

showed, when the treatment is binary, the propensity score, i.e. the probability of re-

ceiving treatment, can serve as a balancing score, which equivalently means that the

treatment assignment and covariates are conditionally independent given the propensity

score. Moreover, under the strong ignorability assumption, matching on propensity scores

may yield unbiased estimates of treatment e↵ects (Rosenbaum and Rubin 1983). Some

existing literature had generalized the notion of the propensity score to problems where

the treatment is other than binary, such as continuous, nominal, or ordinal; and under

some mild conditions, treatment e↵ect estimates remain unbiased (Yang et al. 2016; Imai

and Van Dyk 2004).
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In this work, we are primarily concerned with matched data with multilevel (nom-

inal/ordinal) treatments. Examples of these types of treatments include drugs of di↵erent

types or manufacturers, and drug doses with di↵erent amounts, such as low/medium/high.

With proper tools to achieve matching in the covariates, it then becomes relevant to eval-

uate the balance within these matched results, i.e., whether the covariates are equally

distributed in di↵erent treatment groups given the matching. When the treatment is

binary, the classical textbook method to evaluate matching incorporates procedures such

as investigating the marginal distribution of each covariate in the treated and controlled

sets, before and after matching (Rosenbaum 2010). However, it is still preferable to give

a more quantifiable and statistically meaningful assessment of the matching quality. In-

stead of using descriptive statistics to assess the covariate balance, Hansen and Bowers

(2008) called for an omnibus statistical test that performs balance assessment one-shot.

Although they were primarily focused on matching balance assessment in randomized

trials, we can easily generalize their notion to observational study because under the null

hypothesis that a good matching was done, an observational study should be no di↵erent

from an experimental study.

To evaluate covariate balance, we motivate our approach using an adjacent category

logistic regression model for treatment assignments as a function of a set of properly

chosen background covariates. With presumably correctly matched sets of observations,

the null hypothesis that the treatment assignment is independent of any covariates could

be expressed as the global null � = 0 in the context of logistic regression. We hereby

propose the usage of a statistic inspired by the Rao score test as an omnibus method to

assess matching, using likelihood functions conditioning on the observed strata-specific

treatment counts to account for stratification. We approximate the asymptotic behavior

of the test statistic using a �
2 distribution to complement the omnibus test pipeline, and

prove the limiting distribution holds under mild assumptions. Then, we apply the method

to an Ohio observational health study where matching was done for multilevel-treated

observations and conclude the method was insu�cient to induce balance on all covariates

simultaneously. It is to be noted that although the work is motivated by matching for

observational data, it is generally applicable to any type of matched data with multiple

treatment levels, including matched data from randomized controlled trials, because the

null hypothesis of balanced covariates, or valid matching, is generally applicable to data

collected by any methods.

Finally, simulation studies show that this method has proper convergence behavior and

thus obtains valid Type I error rate under the null hypothesis, and it achieves desirable

power when the sample size is relatively large.
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Chapter 2

Methods

This chapter contains our main method for covariate balance assessment under the afore-

mentioned scenario, i.e., one with a multilevel treatment variable and matched (grouped)

observations. The method is rather straightforward. First assume we were given N

observations that are grouped into s di↵erent strata based on some similarity metrics,

according to any valid matching procedure. We now state our null hypothesis in words,

i.e. that the matching is valid. Then this implies that observations in the same strata

have the same treatment assignment probabilities. Because the treatment assignment

Y = 1, 2, . . . J should be independent of the background covariates x 2 Rp conditioning

on propensity score-based matching information, when modeling the treatment assign-

ment by the background covariates using a regression model, the slope parameters � of

the model should satisfy � = 0.

Therefore the problem gets reduced to testing � = 0 in a regression model that can

account for the fact that the observations have a grouping structure, and within groups,

the observations are homogeneous in terms of treatment assignment probabilities. It can

be seen later that a slightly modified version of an adjacent category logistic regression

model will be su�cient. To derive the Rao score test statistics requires working on the

likelihood function yielded by the model, and we further condition on several strata-

specific treatment counts to account for the hypothetical setup of a stratified treatment

assignment regime. It can be seen in Section 2.5 that we can express the test statistic

in a relatively simple form that is easily computable. To perform testing, some existing

results are employed to approximate the limiting behavior of the statistic.

We hereby give the outline of the chapter. Section 2.1 introduce the adjacent category

logistic regression model. Section 2.2 extends the original regression model to allow for

a stratified/grouped design in observations, as is the case in our problem. We construct

conditional likelihood of the stratified adjacent category logistic regression model in Sec-

tion 2.3. Section 2.4 introduces the (generalized) Rao score test as an omnibus testing

method to infer global null e↵ects in the model. And finally, we derive the test statistic

in Section 2.5, with proofs postponed to Appendix A.
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2.1 Adjacent Category Logistic Regression

In this model, let Y be the treatment variable with possible outcome labels 1, 2, 3, ..., J ,

serving as aliases of the original treatments levels, and denote ⇡j(x) = P (Y = j), with the

probability implicitly conditioning on the covariates x, which are background variables

that we deem as relevant to the natural mechanism that influences treatment assignment

in a non-experimental setting. The model is given as

log
⇡j(x)

⇡j+1(x)
= ↵j + �j

Tx, j = 1, 2, . . . , J � 1

With some simple algebra, we observe that

⇡j(x) =

8
<

:

exp{
PJ�1

k=j (↵k+�T
k x)}

1+
PJ�1

i=1 exp{
PJ�1

k=i (↵k+�T
k x)} , j < J

1
1+

PJ�1
i=1 exp{

PJ�1
k=i (↵k+�T

k x)} , j = J

(2.1)

Then, to get the likelihood function, we denote the observed sample by

X = [xij]n⇥p , Y = [Yi]n⇥1, n : sample size, p : number of covariates

We let ti = [ti,j]1⇥J =
h
ti,1 ti,2 . . . ti,J

i
be the set of indicator variables representing

the category that yi falls in, where the j-th element of ti is the individual indicator of

whether the i-th response falls into the category j; it follows that
PJ

j=1 ti,j = 1, 8i =
1, . . . , n. Consequently, we have the equivalent expression for the likelihood of observing

a certain result at the ith observation

P (Yi = yi) =
JY

j=1

⇡j(xi)
ti,j , ti,j =

8
<

:
1, j = yi

0, otherwise
(2.2)

2.2 Adjacent Category Logistic Regression with Stratification

In our working scenario, the data were grouped into strata based on information char-

acterizing their probability distributions of receiving each treatment. Hence, it is of our

central interest to extend our previous work on adjacent category logistic model to a

situation where the data is stratified into s groups. Here, we similarly let Y be the re-

sponse with possible outcome labels 1, 2, 3, ..., J . Moreover, let b = 1, ..., s be the indices

of the strata. Now, for any realization x that belongs to the b-th strata, we denote its

assignment probability as ⇡j(x) = P (Y = j), with the probability implicitly conditioning

on the background covariates x and the strata b. The model is given as

log
⇡j(x)

⇡j+1(x)
= ↵jb + �j

Tx, j = 1, 2, . . . , J � 1
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Here, we introduced a di↵erent intercept for each stratum to take into account the fact

that the data is stratified based on how their assignment probabilities di↵er and that

data points within the same stratum have the same assignment probability. And it is to

be noted that it is su�cient to only introduce a strata-specific design for the intercepts,

but not the slopes. To adopt a common slope over strata is equivalent to assuming that

the e↵ects of the background covariates on the treatment assignments behave uniformly

across strata. However, it is exactly the case in our null hypothesis that the background

covariates have null e↵ect � = 0 in each stratum, so assuming a uniform slope to char-

acterize the e↵ect of the background variables is su�cient, convenient, and more logical

in our situation. Given this model, we analogously observe that

⇡j(x) =

8
<

:

exp{
PJ�1

k=j (↵kb+�T
k x)}

1+
PJ�1

i=1 exp{
PJ�1

k=i (↵kb+�T
k x)} , j < J

1
1+

PJ�1
i=1 exp{

PJ�1
k=i (↵kb+�T

k x)} , j = J

(2.3)

As in the non-stratified case, we denote the observed sample by

X = [xij]n⇥p , Y = [Yi]n⇥1, n : sample size, p : number of covariates

And we defined ti = [ti,j]1⇥J =
h
ti,1 ti,2 . . . ti,J

i
to be the set of indicator functions

representing the category that yi falls in, where the j-th element of ti is the individual

indicator of whether the i-th response falls into the category j; it follows that
PJ

j=1 ti,j =

1, 8i = 1, . . . , n. Also, since we have s di↵erent strata, each owns some observations,

we use I(b) to denote the set of indices of observations belonging to the b-th stratum,

b = 1, 2, ..., s. Therefore, as an extension of (2.2), we have the following expression for

the likelihood of the data:

P (Y1 = y1, . . . , Yn = yn) =
sY

b=1

Y

i2I(b)

JY

j=1

⇡j(xi)
tij

Remark 2.2.1. Equations (2.1) and (2.3) gives the assignment probabilities under the

ordinary adjacent-category logistic model. However, in the actual computation of the

likelihood, we will consider a slight variant of the model, i.e., by conditioning on the

su�cient statistics of the intercepts, so as to account for stratification within data.
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2.3 Conditional Likelihood Functions for Adjacent Category
Logistic Models

Given the models expressing likelihoods of the adjacent category logistic model, we further

condition on several su�cient statistics. As can be seen in the stratified case, conditioning

on these statistics brings into our model information from the matching (stratification).

Proposition 2.3.1 (Non-stratified Conditional Likelihood). Conditioning on the suf-

ficient statistics cj, defined as the realizations of Cj :=
Pj

k=1

Pn
i=1 tik, for all j =

1, 2, . . . , J , the conditional likelihood function of the data is expressed as

P (Y1 = y1, . . . , Yn = yn |
jX

k=1

nX

i=1

tik = cj, 8j = 1, 2, . . . , J)

=
exp

nPJ�1
j=1 �

T
j

hPn
i=1(
Pj

k=1 tikxi)
io

P
y⇤2S(t)

exp
nPJ�1

j=1 �
T
j

hPn
i=1(
Pj

k=1 t
⇤
ikxi)

io

where S(t) =
�
(y⇤1, y

⇤
2, . . . , y

⇤
n) :

Pj
k=1

Pn
i=1 t

⇤
ik = cj 8j = 1, . . . , J

 
denotes the set

of all possible categorical outcomes Y , under the constraint that the cumulative sum of

observations under each category being the observed value cj.

Proof. A.1

As mentioned previously, we extend the conditioning regime to the stratified model,

so that the matching is taken into account in our likelihood.

Proposition 2.3.2 (Stratified Conditional Likelihood). For a data with strata b =

1, . . . , s, let I(b) denotes the collection of indices of observations belonging to the b-th stra-

tum. Conditioning on the su�cient statistics cjb’s, defined as cjb =
Pj

k=1

P
i2I(b) tik, j =

1, 2, ..., J ; b = 1, 2, ..., s, the conditional likelihood function of the data is expressed as

P (Y1 = y1, . . . , Yn = yn |
jX

k=1

X

i2I(b)

tik = cjb, 8j = 1, 2, ..., J ; b = 1, 2, ..., s)

=
exp

nPJ�1
j=1 �

T
j

⇥Pn
i=1 xi

�Pj
k=1 tik

�⇤o

P
y⇤2S(t)

exp
nPJ�1

j=1 �
T
j

⇥Pn
i=1 xi

�Pj
k=1 t

⇤
ik

�⇤o

where S(t) =
�
(y⇤1, y

⇤
2, . . . , y

⇤
n) :

Pj
k=1

P
i2I(b) t

⇤
ij = cjb 8j = 1, . . . , J ; b = 1, . . . , s

 
denotes

the set of all possible (categorical) outcomes, under the constraint that the strata-wise

cumulative sum of observations under each category being the observed value cjb.

Proof. A.4
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2.4 The Rao Score Test

The Rao score test is paired with our model to statistically quantify the quality of match-

ing (Rao 2005). We first present a general version of the test, which motivates our method

for balance testing. The Rao score test states the following

Theorem 2.4.1 (Rao score test). Let X = (X1, . . . , Xn) be an i.i.d. sample of size n

from the density function p(x, ✓) where ✓ is a p-vector parameter, and denote the joint

density by P (X, ✓) = p(x1, ✓) . . . p(xn, ✓) and the log likelihood by l(✓ | X) = logP (X, ✓).

The score vector of p components is defined as

s(✓) =
@

@✓
l(✓ | X) =

h
@

@✓1
l(✓ | X) @

@✓2
l(✓ | X) . . .

@
@✓p

l(✓ | X)
iT

And the Fisher information matrix is defined as

I(✓) = �E

@
2

@✓2
l(✓ | X)

�

where @2

@✓2 l(✓ | X) is the Hessian of the log likelihood (Lehmann and Casella 2006).

Then under H0 : ✓ = ✓0, where ✓0 is a specified p-dimensional real vector,

[s(✓0)]
T [I(✓0)]

�1[s(✓0)]
d! �

2
p

Remark 2.4.1. Note that the Rao score test statistic behaves in a �
2 fashion, which

directly motivates our approximation.

Proposition 2.4.1. Under regularity conditions (B.2.1),

T
2 ..= [s(0)]T [I(0)]�[s(0)]

d! �
2
r

where [I(0)]� is a generalized inverse of I(0) = �E[H(0)] = �H(0), r = rank(I(✓)), and

s(0), H(0) are score vector and Hessian matrix of the log-likelihood evaluated at � = 0,

respectively. Details of these quantities are given in the next section.

Proof. We postpone the proof to Appendix B.

Remark 2.4.2. Proposition 2.4.1 naturally introduces a hypothesis test for the null hy-

pothesis H0 : � = 0 for the stratified adjacent category logistic regression model. Chapter

4 is devoted to study the operating characteristics of this test.
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2.5 The Rao Score Test Statistic for Balance Testing

Our main contribution in this work is the derivation of the exact score vector and Hessian

matrix of the log-likelihood under stratified and non-stratified designs, where the result

in the latter case, as an extension of the former case, will be applied to balance testing.

We hereby state our main propositions.

In order to test the null hypothesis H0 : �j = 0, 8j = 1, ..., J � 1 in a quadratic

form using Rao’s notation, we stack the slope vectors together as a [p(J � 1)]⇥ 1 vector

�, and the following development of the test statistic relies on this vectorization

� =
h
�
T
1 | �

T
2 | · · · | �

T
J�1

iT

Proposition 2.5.1. The score function of the unstratified conditional log-likelihood taken

with respect to the j-th block of � and evaluated at �j = 0 is

sj(0) =
@l

@�j

���
�j=0

=

 2

64x1 x2 · · · xp

3

75�

2

641 1 · · · 1

3

75

2

66664

x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xp

3

77775

!T

zj

where xj is the data vector for the j-th covariate, 1 is the n-dimensional all-one vector,

zj =
hPj

k=1 t1,k

Pj
k=1 t2,k · · ·

Pj
k=1 tn,k

iT
=
h
1{Y1  j} 1{Y2  j} · · · 1{Yn  j}

iT
,

and xc =
1
n

Pn
i=1 xic.

Proof. A.2

Proposition 2.5.2. The score function of the stratified conditional log-likelihood taken

with respect to the j-th block of � and evaluated at �j = 0 is

sj(0) =
@l

@�j

���
�j=0

=

 2

64x1 x2 · · · xp

3

75�

2

6411 12 · · · 1s

3

75

2

66664

x1
(1)

x2
(1) · · · xp

(1)

x1
(2)

x2
(2) · · · xp

(2)

...
...

. . .
...

x1
(s)

x2
(s) · · · xp

(s)

3

77775

!T

zj

where zj =
hPj

k=1 t1k

Pj
k=1 t2k · · ·

Pj
k=1 tnk

iT
=
h
1{Y1  j} 1{Y2  j} · · · 1{Yn  j}

iT
,

1b =
h
1{1 2 I(b)} 1{2 2 I(b)} · · · 1{n 2 I(b)}

iT
is the indicator vector of strata

membership, xj is the data vector for the j-th covariate, nb is the size of the b-th stratum,

and xc
(b) = 1

nb

P
i2I(b) xic is the local average in stratum b of the c-th covariate.

Proof. A.5

8



Proposition 2.5.3. The Hessian of the unstratified conditional log-likelihood taken with

respect to � evaluated at � = 0 is

H(0) =
@
2
l

@�2

���
�=0

= A⌦ ccov(X) 2 Rq⇥q

where A =

2

66664

a1,1 a1,2 · · · a1,(J�1)

a2,1 a2,2 · · · a2,(J�1)

...
...

. . .
...

a(J�1),1 a(J�1),2 · · · a(J�1),(J�1)

3

77775
is a symmetric matrix of constant mul-

tipliers, with aj,l =

8
>>><

>>>:

cj(cl�n)
n , if j < l

cj(cj�n)
n , if j = l

cl(cj�n)
n , if j > l

.

The ⌦ operator denotes the Kronecker product, and q = p(J � 1) denotes the dimension

of the parameter space.

Proof. A.3

Proposition 2.5.4. The Hessian of the stratified conditional log-likelihood taken with

respect to � evaluated at � = 0 is

H(0) =
@
2
l

@�2

���
�=0

=
sX

b=1

A
(b) ⌦ ccov(b)(X) 2 Rq⇥q

where A
(b) =

2

66664

a
(b)
1,1 a

(b)
1,2 · · · a

(b)
1,(J�1)

a
(b)
2,1 a

(b)
2,2 · · · a

(b)
2,(J�1)

...
...

. . .
...

a
(b)
(J�1),1 a

(b)
(J�1),2 · · · a

(b)
(J�1),(J�1)

3

77775
is a symmetric matrix of constant

multipliers specifically defined for each stratum, with the (j, l)-th entry defined as

a
(b)
j,l =

8
>>><

>>>:

cjb(clb�nb)
nb

, if j < l

cjb(cjb�nb)
nb

, if j = l

clb(cjb�nb)
nb

, if j > l

The ⌦ operator denotes the Kronecker product, and ccov(b)(X) is defined as the sam-

ple covariance matrix of stratum b, with the (c, d)-th entry defined as ccov(b)(xc, xd) =
1

nb�1

hP
i2I(b) xicxid � 1

nb
(
P

i2I(b) xic)(
P

i2I(b) xid)
i
, and nb is the size of the b-th stratum.

and q = p(J � 1) denotes the dimension of the parameter space.

Proof. A.6
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Chapter 3

Application to Ohio Medicaid Data

Next, we apply our method to an observational dataset with multiple treatment levels,

with data being matched into strata of size three using a propensity score-based method

(Nattino, Lu, et al. 2021). For data with three treatment levels, called 1, 2, and 3, the

authors proposed an algorithm that produces 1:1:1 matched sets, i.e., within each matched

set, each observation has a unique treatment. They defined a distance measurement by

first calculating a three-way distance of each matched triplet, and then summing over

the three-way distances over all triplets, where the three-way distance is the sum of the

pairwise distance between all possible pairs within a triplet. Here, the propensity score

information might be used as the pairwise distance. And the match is created based on

the following algorithm that aims to minimize the total three-way distance within the

matched data:

1. Choose two starting treatment levels, say 1-2, and create a 1:1 match between these

treatments;

2. For each of the 1-2 pairs, they optimally match a subject from the third group, and

let us call the result match a;

3. Then form two alternative matches from match a by (i) fixing all 2-3 pairs in match

a, and optimally match observations with treatment 1, producing match b; and (ii)

fixing all 1-3 pairs in match a, and optimally match observations with treatment 2,

producing match c;

4. In step 3, if match b and match c both have greater total distance than match a,

then conclude the algorithm with match a; otherwise, replace match a in step 3 by

the one from match b and match c that has lower total distance, and repeat step

3, until termination.

We will focus on evaluating the covariate balance of matchings given by their al-

gorithm. In another paper (Nattino, Song, and Lu 2022), the authors developed an

algorithm that matches data with more than three levels of treatment, and they applied

their method to the data from two years (2012 & 2015) of the Ohio Medicaid Assessment

10



Surveys (OMAS), “a survey that is periodically administered by the Ohio Department of

Medicaid and aims at assessing access to healthcare system, its utilization and the health

status of Ohioans” (Ohio Colleges of Medicine Government Resource Center 2020, as cited

in Nattino, Song, and Lu 2022). For context-specific reasons, authors of Nattino, Song,

and Lu 2022 defined treatment levels by year of survey (2012 or 2015) and household

income level (90%-138% of the Federal Poverty Level (FPL) or 139%-400% of the FPL).

To mimic their data example, we considered three levels of treatments: (1) 2012 90-138,

(2) 2012 139-400, and (3) 2015 90-138. And as in the case of Nattino et al., we performed

matching based on background covariates characterizing the following information: age,

sex, race, education level, marital status, number of children in the household, type of

county of residence, alcohol use, smoking status, mental health, and disability. It is worth

noting that they utilized only categorical (indicator) variables as background covariates,

and we therefore also used all covariates in the format of categorical variables.

Applying the triplet matching algorithm in Nattino, Lu, et al. 2021, we obtained 1594

matched sets of three observations, with observations in the same stratum having unique

treatment assignments. As their algorithm iteratively performs paired matching, the

matching results, therefore, depend on the starting pair of treatments. Thus, we applied

the algorithm with all three possible starting pairs: 1-3, 2-3, and 1-2, performing a balance

test for each of them. The future analysis in this paper, however, only concerns with the

match obtained using the starting pair 1-3. The test results using the �
2 approximation

are summarized in Table 3.1.

T
2 statistic df p-value

1-3 239.679 38 4.293⇥ 10�31

2-3 282.218 38 4.588⇥ 10�39

1-2 241.362 38 2.096⇥ 10�31

Table 3.1: Balance test result for matched data using the triplet matching algorithm,
with varying starting treatment pairs; p-values are calculated from the �2 approximation

It is observable that we have strong evidence to reject the null hypothesis that the

algorithm produces a su�cient matching, no matter how we change the starting pair.

To investigate why this is the case, we calculated the standardized mean di↵erence be-

tween each treatment group and the rest two groups, before and after matching, as an

examination of covariate balance. The results are given in Table 3.2.

From inspecting the standardized mean di↵erences, we observe that despite the general

trend that the algorithm gave decreased mean di↵erences after matching, it failed to

induce balance, or even inflated imbalance, for some covariates and treatment groups.

And we suspect that although this issue is not uncommon for many matching algorithms,

it could have contributed to the observation that our test rejected the null hypothesis of

covariate balance.
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Variable
2012 90-138 2012 139-400 2015 90-138

Pre Post Pre Post Pre Post
Age (25-34 vs. 19-24) -0.022 -0.003 -0.124 0.024 0.148 -0.022
Age (35-44 vs. 19-24) -0.025 0.059 0.043 -0.014 -0.033 -0.046
Age (45-54 vs. 19-24) -0.012 0.005 0.081 -0.019 -0.083 0.014
Age (55-64 vs. 19-24) 0.044 -0.039 0.094 0.004 -0.132 0.035
Sex (Female vs. Male) 0.055 0.026 -0.036 -0.049 0.004 0.024

Race (Black vs. White) 0.128 -0.005 -0.167 -0.015 0.107 0.020
Race (Hispanic vs. White) 0.099 0.044 -0.084 -0.012 0.030 -0.033

Race (Other vs. White) -0.031 0.094 -0.193 0.016 0.220 -0.118
Education

(High school diploma vs.
No high school diploma)

0.078 0.010 -0.151 -0.019 0.122 0.010

Education
(College degree or higher vs.

No high school diploma)
-0.168 -0.038 0.304 0.037 -0.239 0.001

Marital status (Married vs.
Not married)

-0.131 0.032 0.606 0.022 -0.603 -0.055

Number of children (1 vs. 0) 0.026 0.054 0.028 -0.030 -0.048 -0.025
Number of children (>1 vs. 0) -0.039 0.036 0.053 -0.009 -0.037 -0.027

County type
(Suburban vs. Metropolitan)

-0.058 0.016 0.023 -0.002 0.007 -0.014

County type
(Rural vs. Metropolitan)

-0.063 -0.014 0.069 0.007 -0.041 0.007

Alcohol use past 30 days
(Yes vs. No)

-0.084 0.020 0.254 0.010 -0.234 -0.030

Smoking status
(Smoked >100 cigarettes vs. No)

-0.069 0.014 0.176 -0.037 -0.156 0.023

Mental health distress
(Yes vs. No)

0.221 -0.001 -0.253 0.014 0.141 -0.014

Disability (Yes vs. No) 0.276 -0.036 -0.433 0.031 0.302 0.006

Table 3.2: Standardized Mean Di↵erences (SMD) between the three treatment groups
and the other two, where “Pre” and “Post” stand for the pre-matching and post-matching
SMD, respectively; the match is obtained using starting treatment pair 1-3
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Chapter 4

Simulation Analysis

4.1 Convergence of the Test Statistic

In this section, we aim to visually examine the convergence of T 2 to its limiting distribu-

tion under the null hypothesis that the treatment assignment is independent of covariates

given the stratification, using the data from Chapter 3. To observe convergence, we ran-

domly subsetted the data into subsets of 100, 500, 1000, and 1594 strata, and investigated

how the resampled statistic behaved as we increase strata. In particular, we performed

500 simulation iterations, and in each iteration, we permuted the labels within each stra-

tum and calculated the test statistic based on this permuted set of labels. We performed

this resampling for all four datasets with 100, 500, 1000, and 1594 strata. Theoretically,

the empirical distribution of the test statistic will be roughly �
2 (with df = 38, given our

data) because the treatment assignment regime here conforms with the null hypothesis.

The density plot of the resampled T
2, as we increase strata, is shown in Figure 4.1.

Figure 4.1 Density of the T
2 statistic calculated from labels permuted under the null

hypothesis, as we increase the size of the data. Blue curve is the theoretical density of
the asymptotic �

2
38 distribution; red curve is the estimated density from resamples
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From the plot, as we increase the strata number, the empirical density of T 2 converges

to the theoretical �2 limiting distribution, as expected. This indicates that, under the

null hypothesis, the test has a valid size, or Type I error rate, when we use all 1594 strata.

4.2 Power of the Test

In this section, we will study the power of our statistical test under varying sample sizes

and signal strengths. We focus on the OMAS data matched using the triplet matching

algorithm with 1-3 as the starting pair. The data has s = 1594 strata, each having three

observations treated uniquely, and thus n = 4782.

To evaluate the ability of our method to reject a false null of � = 0, we generate

treatment labels using � vectors drawn from uniform distributions of varying scales in

{±0.25,±0.5,±0.75}. For each � drawn, we randomly sample without replacement a

subset of strata from the entirety of 1594 strata, with the size of the subset being chosen

from {100, 500, 1000, 1594}. It is to be noted that although the unconditional treatment

assignment probability P (Yk = j) is modeled by the logistic regression model 2.1 involving

beta, we observed each strata of three conditional on the fact that they have distinct

treatment levels, and this makes it inappropriate to resample each label naively from

their marginal distributions. In order to carry out resampling under a stratified treatment

assignment regime, we should draw labels from the conditional law that conditions on the

observed treatment counts within each strata. Here, since in every strata i, observations

i1, i2, i3 have three di↵erent treatments Yi1 , Yi2 , Yi3 , we should condition on the event that

all observations in any strata has distinct treatment labels, or |{Yi1 , Yi2 , Yi3}| = 3.

That is, for each pair of � scale and sample size, we resample treatment labels for

every stratum, independent of all other strata, under the restriction that all three labels

within each stratum are distinct. In particular, our resampling technique works as follows

1. Within a strata, calculate treatment assignment probabilities ⇡j
k = P (Yik = j) for

all k = 1, 2, 3, j = 1, 2, 3 using the regression model with known �

2. For the first observation i1 in the triplet, calculate P (Yi1 = j|Yi1 6= Yi2 6= Yi3) =

(
P

(k,l)2S(j)
⇡
j
1⇡

k
2⇡

l
3)/(

P
(p,q,r)2S

⇡
p
1⇡

q
2⇡

r
3) for all j = 1, 2, 3, where S(j) = {(k, l) : j 6= k 6=

l}, and S = {(p, q, r) : p 6= q 6= r}. Draw Yi1 from this distribution, called yi1 .

3. For the second observation i2 in the triplet, calculate P (Yi2 = j|Yi1 6= Yi2 6=
Yi3 ;Yi1 = yi1) = ⇡

j
2⇡

k
3/(

P
(p,q)2S(yi1 )

⇡
p
2⇡

q
3) for all j = 1, 2, 3, where k 6= j 6= yi1 ,

and S(yi1) = {(p, q) : yi1 6= p 6= q}. Draw Yi2 from this distribution, called yi2 .

4. Then the realization yi3 of Yi3 will be deterministic, and our triplet drawn is

yi1 , yi2 , yi3 .
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(a)

(b)

(c)

Figure 4.2 Empirical power of the test with levels 0.1, 0.05, and 0.01. Figure 4.2a,
4.2b, and 4.2c corresponds to tests of � drawn from uniform distributions with ranges of

±0.25, ±0.5, and ±0.75. The simulation runs 300 iterations in all cases.
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We repeat the previous resampling process in every simulation iterations and calculate

the corresponding p-values, over 300 simulation iterations. Results are given in Figure

4.2.

From the simulation results, it is seen that for a sample size as small as 300 (100

strata), even for signals with a range of ±0.75, the test behaves poorly. However, as

we increase the sample size by fivefold to 1500 (500 strata), the test can capture some

false null hypotheses. In particular, when � is drawn from a range of ±0.5, the 0.1 level

test has a power of nearly 90%. And for � drawn from a range of ±0.75, all of the

0.1, 0.05, 0.01 level tests have powers above 0.99. If we further increase the sample size to

3000 (1000 strata), tests of all levels have powers above 99% for beta with ±0.5,±0.75

scale. Finally, for a dataset with size 4782 (1594 strata), as is the case of our data, for

all signal strengths, all of the 0.1, 0.05, 0.01 level tests have > 99% powers.

It is to be remarked that all covariates in the simulation data from the OMAS study

are indicator variables, which provides an intuitive understanding of the scale of the

covariates and their relative magnitude compared to the � parameter. Empirical obser-

vations suggest that in order to recover signs of invalid matching with � that are as weak

as ±0.25 in the context of indicator covariates, a sample size above 3000 will be desirable.
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Chapter 5

Discussions and Conclusions

5.1 Discussion and Future Work

We developed a method for balance testing applicable to propensity score-based matching

methods, particularly for data with multiple treatments. The methodology of this work

is based on expressing the relationship between background covariates and treatment

assignment by a conditional multilevel logistic regression model. Although propensity

score methods are usually adopted for matching observational data (Rosenbaum 2010),

our method does not assume the method by which matching is generated, and can in

fact be applied to evaluate matchings generated in any fashion. Hence, one may also

use this method to evaluate the matching of data collected from randomized controlled

trials (RCTs). Other potential applications include investigating systematic attrition of

participants of an RCT, in which the data are initially balanced, but participants may

subsequently drop out from the trial, creating a reduced dataset. Our method can be

adopted to evaluate the balance of the matching after attrition, to answer whether there

is a systematic relation between the attrition event and background variables.

One advantage of our method is that it is an omnibus test. Our test evaluates the

balance of all covariates at once, which o↵ers simplicity and statistical quantification

of uncertainty when compared to balance assessments using summary statistics such as

standardized di↵erences in covariate means between treated/control groups (Rosenbaum

2010). However, to visually examine matching, it is still of our interest to provide a

graphical display of these statistics using techniques similar to the Love plot (Love 2002).

A potential extension of this work is to provide visualizations of balance assessment

statistics (e.g. standardized mean di↵erences) for each level of treatment under the

multilevel treatment design, which can be seen as a generalization of the Love plot.

The methods developed in this work are generalizable to other contexts by the nature

of a hypothesis test. One could simply accept these methods at the face level and use

them to test the global null for a regression model. However, our method utilizes a con-

ditional inference approach, and it might be of potential interest to investigate how these

conditional tests compare with their unconditional counterparts in terms of statistical

e�ciencies, as in Liang 1984.
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On the other hand, one weakness of this work is that the limiting distribution of

the test statistics relies on several normality conditions. Although these conditions are

intuitively practical and comprehensible, it is still of further research interest to study

whether relaxations of the conditions are possible.

Numerical simulations exposed some shortcomings of the method. First, in our sim-

ulation study, the method obtains poor power when the sample size is as small as 300,

even with only roughly 20 covariates. This makes it unattractive to adopt our method

in some small sample studies. Also, in our experiment, for weak � signals, the method

tends to be not sensitive enough, unless the sample size becomes larger than, e.g., 3000.

5.2 Conclusions

This work provided a statistical test for covariate balance in causal studies with multiple

treatments, motivated by propensity score-based matching methods (Yang et al. 2016;

Imai and Van Dyk 2004). In particular, our method provides an omnibus test of balance,

which o↵ers convenience and uncertainty quantification compared to classical methods

of matching evaluation using summary statistics. We used a �
2 approximation to the

limiting distribution of the test statistic, conditioning on the strata-based treatment

assignment information to take into account stratification. Based on an observational

dataset, we performed simulations to examine the convergence of the statistic and the

power of the test. The test has good power when the sample size is large, yet does not

obtain a desirable power when either the signal is too weak or the sample size is too

small. As a complement to our method, we proposed that a future research direction

is to generalize the Love plot (Love 2002) to data with multiple treatment levels, and

provide visualizable evaluations thereby.
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Appendix A

Proof of Propositions

A.1 Proof of Proposition 2.3.1

According to the notation in equation (2.2), we have the equivalent expression for prob-

ability of observing a certain result at the ith observation:

P (Yi = k) =
JY

j=1

⇡j(xi)
ti,j , ti,j =

8
<

:
1, j = yi

0, otherwise

Henceforth, we have the following expression for the likelihood function of the sample:

P (Y1 = y1, . . . , Yn = yn) =
nY

i=1

JY

j=1

⇡j(xi)
ti,j

=
nY

i=1

✓
exp{

PJ�1
k=1(↵k + �

T
k xi)}

Di

◆ti,1

. . .

✓
exp{

PJ�1
k=J�1(↵k + �

T
k xi)}

Di

◆ti,J�1
✓

1

Di

◆ti,J

=

Qn
i=1 exp{

PJ�1
k=1(ti,1↵k + ti,1�

T
k xi)} . . . exp{

PJ�1
k=J�1(ti,J�1↵k + ti,J�1�

T
k xi)}Qn

i=1 Di

=
exp

nPn
i=1

⇣PJ�1
k=1 ti,1↵k + · · ·+

PJ�1
k=J�1 ti,J�1↵k

⌘o

Qn
i=1 Di

⇥
exp

nPn
i=1

⇣PJ�1
k=1 ti,1�

T
k xi + · · ·+

PJ�1
k=J�1 ti,J�1�

T
k xi

⌘o

Qn
i=1 Di

where Di = 1 +
PJ�1

t=1 exp{
PJ�1

k=t (↵k + �
T
k xi)} is the common denominator term for all

factors, and this quantity is of no particular interest because it is to be cancelled out

eventually.
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Now, consider the following equivalency

=
⇣ nX

i=1

J�1X

k=1

ti,1↵k

⌘
+ · · ·+

⇣ nX

i=1

J�1X

k=J�1

ti,J�1↵k

⌘
(A.1)

=
⇣ nX

i=1

ti,1

⌘ J�1X

k=1

↵k + · · ·+
⇣ nX

i=1

ti,J�1

⌘ J�1X

k=J�1

↵k (A.2)

=n1

J�1X

k=1

↵k + · · ·+ nJ�1

J�1X

k=J�1

↵k (A.3)

=
J�1X

k=1

ck↵k (A.4)

Here, we used nj
..=
Pn

i=1 ti,j to denote the total observations with Y falling into category

j. Accordingly, we let cj ..=
Pj

k=1

Pn
i=1 tik, for all j = 1, 2, . . . , Jand in future derivations

let Cj denote the random variable corresponding to the observed quantity cj.

Also, consider a similar equivalency

nX

i=1

⇣ J�1X

k=1

ti,1�
T
k xi + · · ·+

J�1X

k=J�1

ti,J�1�
T
k xi

⌘
(A.5)
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(A.8)

With (A.4) and (A.8), we rewrite the likelihood P (Y1 = y1, . . . , Yn = yn) as

P (Y1 = y1, . . . , Yn = yn)

=
exp

nPn
i=1

⇣PJ�1
k=1 ti,1↵k + · · ·+

PJ�1
k=J�1 ti,J�1↵k
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This means the conjunction probability of
�
Y1 = y1, . . . , Yn = yn

 
with the event

�
C1 = c1, . . . , CJ = cJ

 
, i.e. the joint likelihood, can be expressed as

P (Y1 = y1, . . . , Yn = yn, C1 = c1, . . . , CJ = cJ)

=
exp

nPJ�1
k=1 ck↵k +

PJ�1
j=1 �

T
j

hPn
i=1 xi

⇣Pj
k=1 ti,k

⌘io

Qn
i=1 Di

Let S(t) =
�
(y1, y2, . . . , yn) :

Pj
k=1

Pn
i=1 ti,k = cj 8j = 1, . . . , J

 
denote the set of all

possible outcomes Y satisfying the constraint that the cumulative sum of observations

lower than or equal to each category j equals cj. Here, we keep the notation of ti,k to

denote the indicator of 1{yi = k}.
Summing the joint likelihood over this set of permutation S(t) gives the probability

of the event
�
C1 = c1, . . . , CJ = cJ

 
, i.e.,

P (C1 = c1, . . . , CJ = cJ)

=
X

y⇤2S(t)

P (Y1 = y
⇤
1, . . . , Yn = y

⇤
n, C1 = c1, . . . , CJ = cJ)

=
X

y⇤2S(t)

exp
nPJ�1
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T
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⇤
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⌘io

Qn
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where each t
⇤
i,k is the deterministic indicator analogously defined for y⇤.

With these results, it directly follows that the conditional likelihood on the su�cient

statistic
�
C1 = c1, . . . , CJ = cJ

 
is equal to

P (Y1 = y1, . . . , Yn = yn | C1 = c1, . . . , CJ = cJ)

=
P (Y1 = y1, . . . , Yn = yn, C1 = c1, . . . , CJ = cJ)
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A.2 Proof of Proposition 2.5.1

We first introduce some shorthand notations

T (�1, ..., �J�1) =
J�1X

j=1

�
T
j

h nX
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xi

⇣ jX
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T
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⇣ jX

k=1

t
⇤
i,k

⌘i

where T
⇤ changes as y⇤ 2 S(t) changes during the iteration.

With these we may re-express the likelihood and log-likelihood in the following fashion

L(� | X, Y, C) ..= P (Y1 = y1, . . . , Yn = yn | C1 = c1, . . . , CJ = cJ)

=
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n
T (�1, ..., �J�1)

o

P
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n
T

⇤(�1, ..., �J�1)
o⌘

Now, we di↵erentiate T (�1, ..., �J�1) and T
⇤(�1, ..., �J�1) with respect to each entry c

(the slope corresponding to the c-th covariate) of each �j (vector of slope coe�cients for

the j-th category)
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T
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k=1

t
⇤
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⌘

With the above expressions, we may take the derivative of the log-likelihood function

with respect to each entry c (the slope corresponding to the c-th covariate) of each �j

(vector of slope coe�cients for the j-th category)
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But this, evaluated at �j = 0 under the null hypothesis, can be expressed as
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P
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(A.9)

=
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P
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P
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(A.10)

Now, letting nj =
Pn

i=1 ti,j denote the observed category frequencies that can be

directly calculated once we condition on c1, . . . , cJ , we may notice the following equiva-

lencies

X

y⇤2S(t)

1 =

✓
n

n1, . . . , nJ

◆
(A.11)

X

y⇤2S(t)

jX
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t
⇤
i,k =

cj

n

✓
n

n1, . . . , nJ

◆
(A.12)

where equation (A.11) holds by its nature as a multinomial combinatorial problem. Equa-

tion (A.12) may not be easily seen, but can be shown by considering

X

y⇤2S(t)

jX
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t
⇤
i,k =

X
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◆
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+ · · ·+ (A.14)
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◆
cj

n
(A.16)

where

1. 1{y⇤i  j} is the indicator of whether the observation y
⇤
i falls in a category of order

less than or equal to j;

2. equation (A.15) follows from the possible permutation of labels under the constraint

that y⇤i  j and that we have n1, . . . , nJ observations in categories 1, . . . , J .
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With these conclusions, we see that equation (A.10) transforms to
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Tzj

where where xc is the data vector for the c-th covariate, 1 is the n-dimensional all-one vec-

tor, zj =
hPj

k=1 t1,k

Pj
k=1 t2,k · · ·
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iT
=
h
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iT
,

and xc =
1
n
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i=1 xic.

Noticing �j =
h
�
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(p)
j

iT
, we have
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0 x2 · · · 0
...

...
. . .

...

0 0 · · · xp
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as desired.
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A.3 Proof of Proposition 2.5.3

Recall that we stacked the slope vectors together as a [p(J � 1)]⇥ 1 vector

� =
h
�
T
1 | �

T
2 | · · · | �

T
J�1

iT

And we focus on every entry of the Hessian of the log-likelihood, denoted by @2l(·)
@�

(c)
j @�

(d)
l

,

where l(·) is the log-likelihood function, and this quantity lies at the
⇣
p(j� 1)+ c , p(l�

1)+ d

⌘
-th and (by symmetry of Hessian) the

⇣
p(l� 1)+ d , p(j� 1)+ c

⌘
-th entry of the

Hessian matrix.

These second derivative matrices, however, have simplified solution that depends on

the relative values of j and l. Before getting to the derivatives, we first introduce a new

notation cij that helps us get rid of one layer of summation in the derivation:

cij
..=

jX

k=1

ti,k = 1{yi  j}

where i stands for the i-th observation and j stands for the j-th order category. And it is

to be noted that we should discriminate cij from the su�cient statistics of form cj, where

the former has two indexing quantities and the latter has one. Also, as we did in (A.2),

let nj =
Pn

i=1 ti,j denote the observed category frequencies.

Now we similarly take the second derivatives based on our results of first derivatives:
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=
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Evaluating the second derivative at the null hypothesis that � = 0, we observe
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Now, the derivation reduces to evaluating
P

y⇤2S(t)
c
⇤
ijc

⇤
ml (i 6= m) and

P
y⇤2S(t)

c
⇤
ijc

⇤
il. And

it can be seen that these quantities can only be expressed in closed form if we discuss by

cases:

1. j = l

2. j < l

3. j > l

Case 1: j = l

The evaluation of
P

y⇤2S(t)
c
⇤
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⇤
ml reduces to the evaluation of the combinatorial problem of

picking two slots out of a total of n, under the constraint that both slots has to be among
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Here, equation (A.25) is enumerating all permutation of Y labels in which yi and ym have

the same category, and equation (A.26) is enumerating cases in which their categories

di↵er. To obtain the [·] quantity in equation (A.27), one simply divide every multinomial

coe�cient from equation (A.25) and (A.26) by
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.

The evaluation of
P

y⇤2S(t)
c
⇤
ijc

⇤
il is equivalent to that of

P
y⇤2S(t)

c
⇤
ijc

⇤
ij =

P
y⇤2S(t)

c
⇤
ij since in the

first case we have j = l. So this reduces to

X

y⇤2S(t)

c
⇤
ijc

⇤
il =

X

y⇤2S(t)

c
⇤
ijc

⇤
ij =

X

y⇤2S(t)

c
⇤
ij =

X

y⇤2S(t)

jX

k=1

t
⇤
ik =

✓
n

n1, . . . , nJ

◆
cj

n
(A.30)

28



as we did previously in deriving the first derivatives.

Equation (A.29) and (A.30) allows us to rewrite the second derivatives in equation (A.23)

as follows
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Case 2: j < l

The case when j 6= l is more complicated, and for simplicity of notation we will oftentimes

express the multinomial coe�cients by their alternative form
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◆
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n1!n2! · · ·nJ !

The evaluation of
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ml can be regarded as a combinatorial problem again, where

we pick two slots out of n, with one of them has category less than j and the other less

than l, with j < l:

X

y⇤2S(t)

c
⇤
ijc

⇤
ml =

X

y⇤2S(t)

1{y⇤i  j, y
⇤
m  l} (A.31)

=
jX

k=1

(n� 2)!

(nk � 2)!
p=1,...,JQ

p 6=k
np

+
X

s=1,...,j; t=1,...l; s 6=t

(n� 2)!

(ns � 1)!(nt � 1)!
k=1,...JQ
k 6=s,t

nk

(A.32)

=

✓
n

n1, . . . , nJ

◆"Pj
k=1 nk(nk � 1)

n(n� 1)
+

Pj
s=1

Pl
t=1 nsnt

n(n� 1)
�
Pj

k=1 nknk

n(n� 1)

#
(A.33)

=

✓
n

n1, . . . , nJ

◆
cjcl � cj

n(n� 1)
(A.34)

Here, the first quantity in equation (A.32) is enumerating all permutation of Y labels in

which yi and ym have the same category, and the second is enumerating cases in which

their categories di↵er. To obtain the [·] quantity in equation (A.33), one simply divide

every multinomial coe�cient from equation (A.32) by
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.
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With equation (A.34) and (A.35), we may rewrite equation (A.23) as:
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⌘⇣ nX

m=1

xmd

⌘
� cj(cl � 1)

n(n� 1)

⇣X

i 6=m

xicxmd

⌘
� cj

n

⇣ nX

i=1

xicxid

⌘

=
cjcl

n2

⇣ nX

i=1

xic

⌘⇣ nX

m=1

xmd

⌘
�
(
cj(cl � 1)

n(n� 1)

⇣X

i 6=m

xicxmd

⌘
+
h
cj(cl � 1)

n(n� 1)
� cj(cl � n)

n(n� 1)

i⇣ nX

i=1

xicxid

⌘)

=
cjcl

n2

⇣ nX

i=1

xic

⌘⇣ nX

m=1

xmd

⌘
� cj(cl � 1)

n(n� 1)

⇣ nX

i=1

nX

m=1

xicxmd

⌘
+

cj(cl � n)

n(n� 1)

⇣ nX

i=1

xicxid

⌘

=
cjcl

n2
(xT

c 1)(x
T
d 1)�

cj(cl � 1)

n(n� 1)
(xT

c 1)(x
T
d 1) +

cj(cl � n)

n(n� 1)
(xT

c xd)

=
cj(cl � n)

n(n� 1)
(xT

c xd)�
cj(cl � n)

n2(n� 1)
(xT

c 1)(x
T
d 1)

=
cj(cl � n)

n

✓
xT
c xd

n� 1
� nx̄cx̄d

n� 1

◆

=
cj(cl � n)

n
ccov(xc, xd)

Case 3: j > l

The case when j > l simply follows by symmetry of case 2, swapping the role of j and l

in the derivation.

Thus we may observe that

@
2

@�
(c)
j @�

(d)
l

l(� | X, Y, C)
���
�=0

= aj,l ccov(xc, xd), where aj,l =

8
>>><

>>>:

cj(cl�n)
n , if j < l

cj(cj�n)
n , if j = l

cl(cj�n)
n , if j > l

Recall that we partitioned � into J � 1 segments, and consequently the Hessian were

partitioned into (J � 1)2 blocks each of size p ⇥ p. And it is easy to observe that the

(j, l)-th block equals aj,l ccov(X), which means the entire Hessian equals (aj,l)⌦ ccov(X).

The detailed derivation is omitted here because it highly overlaps with the corresponding

part of A.6. In fact, this is a special case of Proposition 2.5.4, which can be seen by

setting the total number of strata to 1.

31



A.4 Proof of Proposition 2.3.2

Let I(b) to denote the set of indices of observations belonging to the b-th stratum, b =

1, 2, ..., s. Therefore, as an extension of the non-stratified likelihood, we have the following

expression for the likelihood of the data

P (Y1 = y1, . . . , Yn = yn) =
sY

b=1

Y

i2I(b)

JY

j=1

⇡j(xi)
ti,j

=
sY

b=1

Y

i2I(b)

✓
exp{

PJ�1
k=1(↵kb + �

T
k xi)}

Dib

◆ti,1

. . .

✓
exp{

PJ�1
k=J�1(↵kb + �

T
k xi)}

Dib

◆ti,J�1
✓

1

Dib

◆ti,J

=

Qs
b=1

Q
i2I(b) exp{

PJ�1
k=1(ti,1↵kb + ti,1�

T
k xi)} . . . exp{

PJ�1
k=J�1(ti,J�1↵kb + ti,J�1�

T
k xi)}Qs

b=1

Q
i2I(b) Di

=
exp

nPs
b=1

P
i2I(b)

⇣PJ�1
k=1 ti,1↵kb + · · ·+

PJ�1
k=J�1 ti,J�1↵kb

⌘o

Qs
b=1

Q
i2I(b) Dib

⇥
exp

nPs
b=1

P
i2I(b)

⇣PJ�1
k=1 ti,1�

T
k xi + · · ·+

PJ�1
k=J�1 ti,J�1�

T
k xi

⌘o

Qs
b=1

Q
i2I(b) Dib

where Dib = 1 +
PJ�1

t=1 exp{
PJ�1

k=t (↵kb + �
T
k xi)} is the common denominator term for all

factors, and this quantity is of no particular interest because it is to be cancelled out

eventually.

Now, consider the following equivalency

sX

b=1

X

i2I(b)

⇣ J�1X

k=1

ti,1↵kb + · · ·+
J�1X

k=J�1

ti,J�1↵kb

⌘

=
sX

b=1

X

i2I(b)

⇣
ti,1

J�1X

k=1

↵kb + · · ·+ ti,J�1

J�1X

k=J�1

↵kb

⌘

=
sX

b=1

⇣ J�1X

k=1

↵kb

⌘⇣ X

i2I(b)

ti,1

⌘
+ · · ·+

⇣ J�1X

k=J�1

↵kb

⌘⇣ X

i2I(b)

ti,J�1

⌘

=
sX

b=1

n1,b

⇣ J�1X

k=1

↵kb

⌘
+ · · ·+ nJ�1,b

⇣ J�1X

k=J�1

↵kb

⌘

=
sX

b=1

J�1X

j=1

cjb↵jb

Here, we used nj,b
..=
P

i2I(b) ti,j to denote the total observations with Y falling into

category j. Accordingly, we let cjb =
Pj

k=1

P
i2I(b) ti,k, j = 1, 2, ..., J, 8b = 1, 2, ..., s, and

in future derivations let Cjb denote the random variable corresponding to the observed

quantity cjb.
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Also, consider a similar equivalency

sX

b=1

X

i2I(b)

⇣ J�1X

k=1

ti,1�
T
k xi + · · ·+

J�1X

k=J�1

ti,J�1�
T
k xi

⌘

=
nX

i=1

⇣ J�1X

k=1

ti,1�
T
k xi + · · ·+

J�1X

k=J�1

ti,J�1�
T
k xi

⌘

=�
T
1

h nX

i=1

⇣ 1X

k=1

ti,kxi

⌘i
+ �

T
2

h nX

i=1

⇣ 2X

k=1

ti,kxi

⌘i
+ · · ·+ �

T
J�1

h nX

i=1

⇣ J�1X

k=1

ti,kxi

⌘i

=�
T
1

h nX

i=1

xi

⇣ 1X

k=1

ti,k

⌘i
+ �

T
2

h nX

i=1

xi

⇣ 2X

k=1

ti,k

⌘i
+ · · ·+ �

T
J�1

h nX

i=1

xi

⇣ J�1X

k=1

ti,k

⌘i

=
J�1X

j=1

�
T
j

h nX

i=1

xi

⇣ jX

k=1

ti,k

⌘i

With these expressions, we have the likelihood being

P (Y1 = y1, . . . , Yn = yn)

=
exp

nPs
b=1

P
i2I(b)

�PJ�1
k=1 ti,1↵kb + · · ·+

PJ�1
k=J�1 ti,J�1↵kb

�o

Qs
b=1

Q
i2I(b) Dib

⇥
exp

nPs
b=1

P
i2I(b)

�PJ�1
k=1 ti,1�

T
k xi + · · ·+

PJ�1
k=J�1 ti,J�1�

T
k xi

�o

Qs
b=1

Q
i2I(b) Dib

=
exp

nPs
b=1

PJ�1
j=1 cjb↵jb +

PJ�1
j=1 �

T
j

⇥Pn
i=1 xi

�Pj
k=1 ti,k

�⇤o

Qs
b=1

Q
i2I(b) Dib

This means the conjunction probability of
�
Y1 = y1, . . . , Yn = yn

 
with the event

�
Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s

 
, i.e. the joint likelihood, can be expressed as

P

⇣
Y1 = y1, ..., Yn = yn, Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s

⌘

=
exp

nPs
b=1

PJ�1
j=1 cjb↵jb +

PJ�1
j=1 �

T
j

⇥Pn
i=1 xi

�Pj
k=1 ti,k

�⇤o

Qs
b=1

Q
i2I(b) Dib

Now let S(t) =
�
(y1, y2, . . . , yn) :

Pj
k=1

P
i2I(b) ti,j = cjb 8j = 1, . . . , J, 8b = 1, . . . , s

 

denote the set of all possible outcomes Y satisfying the constraint that the strata-wise

cumulative sum of observations lower than or equal to each category j equals the corre-

sponding sum cjb.

Summing the joint likelihood function over this set of permutation S(t) gives the
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probability of the event {Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s}, i.e.

P (Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s) =
X

y⇤2S(t)

P (Y1 = y
⇤
1, . . . , Yn = y

⇤
n)

=
X

y⇤2S(t)

exp
nPs

b=1

PJ�1
j=1 cjb↵jb +

PJ�1
j=1 �

T
j

⇥Pn
i=1 xi

�Pj
k=1 t

⇤
ik

�⇤o

Qs
b=1

Q
i2I(b) Dib

With these results, it directly follows that the conditional likelihood on the su�cient

statistic {Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s} is equal to

P
⇣
Y1 = y1, ..., Yn = yn | Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s

⌘

=
P
⇣
Y1 = y1, ..., Yn = yn, Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s

⌘

P (Cjb = cjb 8j = 1, . . . , J, 8b = 1, . . . , s)

=
exp

nPJ�1
j=1 �

T
j

⇥Pn
i=1 xi

�Pj
k=1 ti,k

�⇤o

P
y⇤2S(t)

exp
nPJ�1

j=1 �
T
j

⇥Pn
i=1 xi

�Pj
k=1 t

⇤
i,k

�⇤o

which is of the same form as the non-stratified version in Proposition 2.3.1, with the only

di↵erence being the indexing set S(t).
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A.5 Proof of Proposition 2.5.2

Previous results established that the conditional log-likelihood under stratified and un-

stratified designs are of the same form, up to a di↵erence in indexing sets. Thus we must

have the result in (A.10) hold for the stratified situation, i.e.

@

@�
(c)
j

l(� | X, Y, C)
���
�j=0

=
nX

i=1

xic

⇣ jX

k=1

ti,k

⌘
�

Pn
i=1 xic

P
y⇤2S(t)

Pj
k=1 t

⇤
i,k

P
y⇤2S(t)

1
(A.36)

=
nX

i=1

xic

⇣ jX

k=1

ti,k

⌘
�

Ps
b=1

P
i2I(b) xic

� P
y⇤2S(t)

Pj
k=1 t

⇤
i,k

�

P
y⇤2S(t)

1
(A.37)

where S(t) =
�
(y1, y2, . . . , yn) :

Pj
k=1

P
i2I(b) ti,j = cjb 8j = 1, . . . , J, 8b = 1, . . . , s

 
as

previously defined.

Now the problem becomes the evaluation of the terms
P

y⇤2S(t)
and

P
y⇤2S(t)

Pj
k=1 t

⇤
i,k,

which can be expressed by the following equivalencies of expressions

X

y⇤2S(t)

1 =

✓
n1

n1,1, . . . , nJ,1

◆
· · ·
✓

nb

n1,b, . . . , nJ,b

◆
· · ·
✓

ns

n1,s, . . . , nJ,s

◆
(A.38)

X

y⇤2S(t)

jX

k=1

t
⇤
ik =

cjb

nb

✓
n1

n1,1, . . . , nJ,1

◆
· · ·
✓

nb

n1,b, . . . , nJ,b

◆
· · ·
✓

ns

n1,s, . . . , nJ,s

◆
(A.39)

where equation (A.38) holds by its nature as a multinomial combinatorial problem. Here,

the terms nkb that appears in the multinomial coe�cients are defined as usual, i.e., as

nj,b
..=
P

i2I(b) ti,j, that is, the count for each category in each stratum that is observed

in the given data, and nb’s denote the size of stratum b, also observed in the data.

Equation (A.39) may not be easily seen, but can be shown by considering the following

for the i-th observation in the dataset, belonging to the b-th stratum

X

y⇤2S(t)

jX

k=1

t
⇤
i,k =

X

y⇤2S(t)

1{y⇤i  j} (A.40)

=

✓
n1

n1,1, . . . , nJ,1

◆
· · ·
✓

nb � 1

n1,b � 1, n2,b, . . . , nJ,b

◆
· · ·
✓

ns

n1,s, . . . , nJ,s

◆
(A.41)

+

✓
n1

n1,1, . . . , nJ,1

◆
· · ·
✓

nb � 1

n1,b, n2,b � 1, . . . , nJ,b

◆
· · ·
✓

ns

n1,s, . . . , nJ,s

◆
(A.42)

+ · · ·+
✓

n1

n1,1, . . . , nJ,1

◆
· · ·
✓

nb � 1

n1,b, n2,b, . . . , nj,b � 1, . . . , nJ,b

◆
· · ·
✓

ns

n1,s, . . . , nJ,s

◆

(A.43)
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=

✓
n1

n1,1, . . . , nJ,1

◆
⇥ · · ·⇥

"✓
nb � 1

n1,b � 1, n2,b, . . . , nJ,b

◆
+ · · ·+

✓
nb � 1

n1,b, n2,b, . . . , nj,b � 1, . . . , nJ,b

◆#

⇥ · · ·⇥
✓

ns

n1,s, . . . , nJ,s

◆

=

✓
n1

n1,1, . . . , nJ,1

◆
· · ·
"✓

nb

n1,b, . . . , nJ,b

◆⇣
n1,b

nb
+ · · ·+ nj,b

nb

⌘#
· · ·
✓

ns

n1,s, . . . , nJ,s

◆

=
cjb

nb

✓
n1

n1,1, . . . , nJ,1

◆
· · ·
✓

nb

n1,b, . . . , nJ,b

◆
· · ·
✓

ns

n1,s, . . . , nJ,s

◆

where

1. 1{y⇤i  j} is the indicator of where the observation y
⇤
i falls in a category of order

less than or equal to j;

2. the equation containing the line (A.43) follows from the possible permutation of

labels under the constraint that y⇤i  j and that we have n1,b, ..., nJ,b observations

in each categories from 1 to J in stratum b.

With (A.38) and (A.39), we may express (A.37) as

@

@�
(c)
j

l(� | X, Y, C)
���
�j=0

=
nX

i=1

xic

⇣ jX

k=1

ti,k

⌘
�

sX

b=1

X

i2I(b)

xic
cjb

nb
(A.44)

=
nX

i=1

xic

⇣ jX

k=1

ti,k

⌘
�

sX

b=1

cjb

nb

X

i2I(b)

xic (A.45)

=
nX

i=1

xic

⇣ jX

k=1

ti,k

⌘
�

sX

b=1

cjbxc
(b) (A.46)

=
�
xc �

sX

b=1

xc
(b)1b

�T
zj (A.47)

where xc
(b) = 1

nb

P
i2I(b) xic is the local average in stratum b of the c-th covariate,

zj =
hPj

k=1 t1,k

Pj
k=1 t2,k · · ·

Pj
k=1 tn,k

iT
=
h
1{y1  j} 1{y2  j} · · · 1{yn  j}

iT
,

and 1b =
h
1{1 2 I(b)} 1{2 2 I(b)} · · · 1{n 2 I(b)}

iT
is the indicator vector of strata

membership.

Thus, following the lines in Appendix Section A.2, we stack the j-th segment of the

score vector as

@l

@�j

���
�j=0

=

 2

64x1 x2 · · · xp

3

75�

2

6411 12 · · · 1s

3

75

2

66664

x1
(1)

x2
(1) · · · xp

(1)

x1
(2)

x2
(2) · · · xp

(2)

...
...

. . .
...

x1
(s)

x2
(s) · · · xp

(s)

3

77775

!T

zj
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A.6 Proof of Proposition 2.5.4

As we did in the previous subsection, we may also adopt the results for non-stratified

second derivatives to the stratified case, which means we could use the results in (A.18)

and (A.19), up to an alternative way to index the observations from 1 to n

@
2

@�
(c)
j @�

(d)
l

l(� | X, Y, C)
���
�=0

(A.48)

=

n P
y⇤2S(t)

Ps
b=1

P
i2I(b) xic(

Pj
k=1 t

⇤
i,k)
on P

y⇤2S(t)

Ps
b0=1

P
m2I(b0) xmd(

Pl
k=1 t

⇤
m,k)

o

"
P

y⇤2S(t)
1

#2 (A.49)

�

P
y⇤2S(t)

hPs
b=1

P
i2I(b) xic(

Pj
k=1 t

⇤
i,k)
ihPs

b0=1

P
m2I(b0) xmd(

Pl
k=1 t

⇤
m,k)

i

P
y⇤2S(t)

1
(A.50)

It is obvious that by arguments in (A.39), we may express the term in (A.49) as

n P
y⇤2S(t)

Ps
b=1

P
i2I(b) xic(

Pj
k=1 t

⇤
i,k)
on P

y⇤2S(t)

Ps
b0=1

P
m2I(b0) xmd(

Pl
k=1 t

⇤
m,k)

o

"
P

y⇤2S(t)
1

#2 (A.51)

=

n P
y⇤2S(t)

Ps
b=1

P
i2I(b) xic(

Pj
k=1 t

⇤
i,k)
o

P
y⇤2S(t)

1
·

n P
y⇤2S(t)

Ps
b0=1

P
m2I(b0) xmd(

Pl
k=1 t

⇤
m,k)

o

P
y⇤2S(t)

1

(A.52)

=
n sX

b=1

cjb

nb

X

i2I(b)

xic

o
·
n sX

b0=1

clb

nb0

X

m2I(b0)

xmd

o
(A.53)

=
n sX

b=1

cjbxc
(b)
o
·
n sX

b0=1

clb0xd
(b0)
o

(A.54)
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Now let us focus on the quantity in (A.50). With some algebra we may simplify it to

a more manageable form

P
y⇤2S(t)

hPs
b=1

P
i2I(b) xic(

Pj
k=1 t

⇤
i,k)
ihPs

b0=1

P
m2I(b0) xmd(

Pl
k=1 t

⇤
m,k)

i

P
y⇤2S(t)

1
(A.55)

=

P
y⇤2S(t)

Ps
b=1

P
i2I(b)

Ps
b0=1

P
m2I(b0) xicxmd(

Pj
k=1 t

⇤
i,k)(

Pl
k=1 t

⇤
m,k)

P
y⇤2S(t)

1
(A.56)

=

Ps
b=1

Ps
b0=1

P
i2I(b)

P
m2I(b0) xicxmd

P
y⇤2S(t)

(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
m,k)

P
y⇤2S(t)

1
(A.57)

Hence we turn our focus to the evaluation of
P

y⇤2S(t)
(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
m,k), and it is always

to be noted that in this expression i 2 I(b) and j 2 I(b0) for some strata b, b0. To fully

transform this into a combinatorial problem, we note that
P

y⇤2S(t)
(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
m,k) =

P
y⇤2S(t)

1{Y ⇤
i  j}1{Y ⇤

m  j}, and evaluate it individually for the following three cases

1. b 6= b
0

2. b = b
0
, i = m

3. b = b
0
, i 6= m

Case 1: b 6= b
0

In this case, we first introduce the following quantity to simplify notation

F (b, j) :=

✓
nb � 1

n1,b, n2,b, . . . , nj,b � 1, . . . , nJ,b

◆
=

nj,b

nb

✓
nb

n1,b, n2,b, . . . , nJ,b

◆
, 8b = 1, ..., s; j = 1, ..., J
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With this, it is easy to observe, when b 6= b
0, the following equivalency

X

y⇤2S(t)

(
jX

k=1

t
⇤
i,k)(

lX

k=1

t
⇤
m,k) =

X

y⇤2S(t)

1{y⇤i  j}1{y⇤m  l} (A.58)

=
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lX

q=1


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✓
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◆�
(A.59)
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=
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n
0
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◆
(A.63)

Case 2: b = b
0
, i = m

In this case, we will find it useful to define r ..= min(j, l). Along with the shorthand

notation F (b, j) defined previously, we may easily observe the following equivalency

X

y⇤2S(t)

(
jX

k=1

t
⇤
i,k)(

lX

k=1

t
⇤
m,k) =

X

y⇤2S(t)

1{y⇤i  j}1{y⇤m  l} =
X

y⇤2S(t)

1{y⇤i  r} (A.64)

=
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◆�
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◆
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Case 3a: b = b
0
, i 6= m, j = l

In this case, we need to split our derivation into even more cases, depending on the

relative values of j and l. W.L.O.G., aside from the case that j = l we will only consider

the case of j < l, which is case 3b, simply because the result for j > l can simply be

obtained by swapping the role of j and l in the case of j < l. Now, back to the case of

j = l, the following equivalency can be shown similarly to what we did in (A.29)

X

y⇤2S(t)

(
jX

k=1

t⇤i,k)(
lX

k=1

t⇤m,k) =
X

y⇤2S(t)

1{y⇤i  j}1{y⇤m  l} (A.70)
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◆
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◆
(A.71)

+ · · ·+
✓
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◆
+

✓
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◆
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+ · · ·+
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◆�
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◆
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+
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+ · · ·+
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+

n1,bn2,b

nb(nb � 1)
+ · · ·+

nj�1,bnj,b

nb(nb � 1)

#

(A.75)

=
1
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
�
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k=1

njb +
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np,bnq,b

� sY
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✓
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◆
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=
�cjb + cjbcjb
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✓
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◆
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✓
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◆
(A.77)

Here, the first three terms in equation (A.71) and (A.72) are enumerating all permuta-

tion of Y labels in which yi and ym have the same category, and the following terms are

enumerating cases in which their categories di↵er. To obtain the [·] quantity in equation

(A.75), one simply divide every multinomial coe�cient from equation (A.71), (A.72), and

(A.73) by
�

nb

n1b,...,nJb

�
.
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Case 3b: b = b
0
, i 6= m, j < l

Here, as mentioned previously, we will investigate the case of j < l. The evaluation ofP
y⇤2S(t)

c
⇤
ijc

⇤
ml can be regarded as a combinatorial problem again, analogous to (A.34)

X

y⇤2S(t)

c⇤ijc
⇤
ml =

X

y⇤2S(t)

1{Y ⇤
i  j, Y ⇤

m  l} (A.78)

=

"
jX

k=1

(nb � 2)!

(nk,b � 2)!
p=1,...,JQ

p 6=k
np,b

+
s=1,...,j; t=1,...lX

s 6=t

(nb � 2)!

(ns,b � 1)!(nt,b � 1)!
k=1,...JQ
k 6=s,t

nk,b

#
⇥
Y

B 6=b

✓
nB

n1,B, . . . , nJ,B

◆

(A.79)

=

✓
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◆"Pj
k=1 nk,b(nk,b � 1)
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+

Pj
s=1

Pl
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nb(nb � 1)
�
Pj

k=1 nk,bnk,b

nb(nb � 1)

#
⇥
Y

B 6=b

✓
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n1,B, . . . , nJ,B

◆

(A.80)

=
cjbclb � cjb
nb(nb � 1)

⇥
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B=1

✓
nB

n1,B, n2,B, . . . , nJ,B

◆
(A.81)

Here, the first quantity in the [·] term in equation (A.79) is enumerating all permutation

of Y labels in which Yi and Ym have the same category, and the second is enumerating

cases in which their categories di↵er, subject to the condition that i,m 2 I(b). To obtain

the [·] quantity in equation (A.80), one simply divide every multinomial coe�cient from

equation (A.79) by
�

nb

n1b,...,nJb

�
.

As we have computed the values of
P

y⇤2S(t)
(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
m,k) with i 2 I(b), m 2

I(b0) under cases where b 6= b
0, b = b

0
, i = m, and b = b

0
, i 6= m, we may evaluate the

second derivative at � = 0, using the results we obtained. In order to take advantage of

these results, we will split the second derivative accordingly, as we will see in a moment.
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So, according to (A.54) and (A.57) we have

@
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@�
(c)
j @�

(d)
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l(� | X, Y, C)
���
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=
n sX
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(b)
o
·
n sX

b0=1
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(b0)
o
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P
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P
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⇤
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P
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1
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=
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P
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P
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⇤
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⇤
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P
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1
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m2I(b)P
m 6=i
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P
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(
Pj
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⇤
i,k)(
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⇤
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P
y⇤2S(t)

1
(A.87)

�
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b=1

P
i2I(b) xicxid

P
y⇤2S(t)

(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
i,k)

P
y⇤2S(t)

1
(A.88)

Now we can observe that lines (A.86), (A.87), (A.88) corresponds to the cases of {b 6= b
0},

{b = b
0
, i 6= m}, and {b = b

0
, i = m}, respectively. Much like how we dealt with the non-

stratified case, we will hereby discuss by cases

1. j = l

2. j < l

3. j > l
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A.6.1 Final Expressions of the Stratified Second-order Deriva-

tives

In this subsection, we combine results from the previous subsection together, to derive

an analytical form of the second-order derivatives. First, let us consider the case when

j = l.

Case 1: j = l

@
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@�
(c)
j @�

(d)
l

l(� | X, Y, C)
���
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=
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clb0xd
(b0)
o

(A.90)

�

Ps
b=1

b0=1,...,sP
b0 6=b

P
i2I(b)

P
m2I(b0) xicxmd

P
y⇤2S(t)

(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
m,k)

P
y⇤2S(t)

1
(A.91)

�

Ps
b=1

P
i2I(b)

m2I(b)P
m 6=i

xicxmd

P
y⇤2S(t)

(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
m,k)

P
y⇤2S(t)

1
(A.92)

�

Ps
b=1

P
i2I(b) xicxid

P
y⇤2S(t)

(
Pj

k=1 t
⇤
i,k)(

Pl
k=1 t

⇤
i,k)

P
y⇤2S(t)

1
(A.93)

=
n sX

b=1

cjbxc
(b)
o
·
n sX

b0=1

cjb0xd
(b0)
o

(A.94)
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n
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i2I(b)

xicxid
cjb
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(A.97)

Note that (A.95), (A.96), (A.97) follows respectively from applying (A.63), (A.77), and

(A.69). Now with the following equations
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n
2
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we may continue the derivation as follows
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Note that (A.111) equals zero, and this can be seen after changing the order of summa-

tion signs. And (A.112) equals
Ps

b=1
cjb(cjb�nb)

nb
ccov(b)(xc, xd), where ccov(b)(xc, xd) is defined

as the sample covariance of the c-th and d-th covariates in stratum b:

ccov(b)(xc, xd) =
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(
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i2I(b)

xic)(
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i

And that concludes the discussion of the case when j = l.

Case 2: j < l

W.L.O.G. we consider the other case, i.e. j < l, in the same spirit as the previous case
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Note that (A.120), (A.121), (A.122) follows respectively from applying (A.63), (A.81),

and (A.69). Now with the following equations
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we may continue the derivation as follows
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i2I(b)

X

m2I(b)

xicxmd

i
(A.125)

+
sX

b=1

X

i2I(b)

cjb(clb � nb)

nb(nb � 1)
xicxid (A.126)

=
n sX

b=1

cjbxc
(b)
o
·
n sX

b0=1

clb0xd
(b0)
o
�

sX

b=1

sX

b0=1

cjb

nb

clb0

n
0
b

X

i2I(b)

X

m2I(b0)

xicxmd (A.127)

�
h sX

b=1

cjb(clb � nb)

n
2
b(nb � 1)

X

i2I(b)

X

m2I(b)

xicxmd

i
+

sX

b=1

X

i2I(b)

cjb(clb � nb)

nb(nb � 1)
xicxid (A.128)

=
sX

b=1

cjb(clb � nb)

nb
ccov(b)(xc, xd) (A.129)

Note that (A.127) equals zero, and this can be seen after changing the order of summation

signs.

A.6.2 Vectorization of the Second Derivatives, with Stratifica-

tion

By (A.113) and (A.129), we see that

@
2

@�
(c)
j @�

(d)
l

l(� | X, Y, C)
���
�=0

=

8
>>><

>>>:

Ps
b=1

cjb(clb�nb)
nb

ccov(b)(xc, xd), if j < l;
Ps

b=1
cjb(cjb�nb)

nb
ccov(b)(xc, xd), if j = l;

Ps
b=1

clb(cjb�nb)
nb

ccov(b)(xc, xd), if j > l.

Nevertheless, if we define the coe�cient

a
(b)
j,l =

8
>>><

>>>:

cjb(clb�nb)
nb

, if j < l;
cjb(cjb�nb)

nb
, if j = l;

clb(cjb�nb)
nb

, if j > l.
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then it is easily seen that

@
2

@�
(c)
j @�

(d)
l

l(� | X, Y, C)
���
�=0

=
sX

b=1

a
(b)
j,l ccov

(b)(xc, xd)

Then it follows that if we again stack �
(1)
j , . . . , �

(p)
j and �

(1)
l , . . . , �

(p)
l , respectively, then

we have the second derivative matrices as

@
2

@�j@�l
l(� | X, Y, C)

���
�=0

=

2

6666664

@2l

@�
(1)
j @�

(1)
l

@2l

@�
(1)
j @�

(2)
l

· · · @2l

@�
(1)
j @�

(p)
l

@2l

@�
(2)
j @�

(1)
l

@2l

@�
(2)
j @�

(2)
l

· · · @2l

@�
(2)
j @�

(p)
l

...
...

. . .
...

@2l

@�
(p)
j @�

(1)
l

@2l

@�
(p)
j @�

(2)
l

· · · @2l

@�
(p)
j @�

(p)
l

3

7777775

�=0

(A.130)

=

2

66664

Ps
b=1 a

(b)
j,l ccov

(b)(x1, x1)
Ps

b=1 a
(b)
j,l ccov

(b)(x1, x2) · · ·
Ps

b=1 a
(b)
j,l ccov

(b)(x1, xp)Ps
b=1 a

(b)
j,l ccov

(b)(x2, x1)
Ps

b=1 a
(b)
j,l ccov

(b)(x2, x2) · · ·
Ps

b=1 a
(b)
j,l ccov

(b)(x2, xp)
...

...
. . .

...
Ps

b=1 a
(b)
j,l ccov

(b)(xp, x1)
Ps

b=1 a
(b)
j,l ccov

(b)(xp, x2) · · ·
Ps

b=1 a
(b)
j,l ccov

(b)(xp, xp)

3

77775

(A.131)

=
sX

b=1

a
(b)
j,l

2

66664

ccov(b)(x1, x1) ccov(b)(x1, x2) · · · ccov(b)(x1, xp)

ccov(b)(x2, x1) ccov(b)(x2, x2) · · · ccov(b)(x2, xp)
...

...
. . .

...

ccov(b)(xp, x1) ccov(b)(xp, x2) · · · ccov(b)(xp, xp)

3

77775
(A.132)

=
sX

b=1

a
(b)
j,l ccov

(b)(X) (A.133)

where ccov(b)(X) is the sample covariance matrix estimated from the b-th strata.

Recall we stacked the slope vectors together as a [p(J � 1)]⇥ 1 vector

� =
h
�
T
1 | �

T
2 | · · · | �

T
J�1

iT

And it is notable that (A.133) gives the (j, l)-th block of the Hessian matrix of �. With

this observation, we can express the Hessian matrix of the entire � vector as the following
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square block matrix with (J � 1)2 blocks

@
2
l

@�2

���
�=0

= H(�)
���
�=0

=

2

666664

@2l
@�1@�1

@2l
@�1@�2

· · · @2l
@�1@�J�1

@2l
@�2@�1

@2l
@�2@�2

· · · @2l
@�2@�J�1

...
...

. . .
...

@2l
@�J�1@�1

@2l
@�J�1@�2

· · · @2l
@�J�1@�J�1

3

777775

�=0

=

2

66664

Ps
b=1 a

(b)
1,1ccov

(b)(X)
Ps

b=1 a
(b)
1,2ccov

(b)(X) · · ·
Ps

b=1 a
(b)
1,(J�1)ccov

(b)(X)
Ps

b=1 a
(b)
2,1ccov

(b)(X)
Ps

b=1 a
(b)
2,2ccov

(b)(X) · · ·
Ps

b=1 a
(b)
2,(J�1)ccov

(b)(X)
...

...
. . .

...
Ps

b=1 a
(b)
(J�1),1ccov

(b)(X)
Ps

b=1 a
(b)
(J�1),2ccov

(b)(X) · · ·
Ps

b=1 a
(b)
(J�1),(J�1)ccov

(b)(X)

3

77775

=
sX

b=1

2

66664

a
(b)
1,1ccov

(b)(X) a
(b)
1,2ccov

(b)(X) · · · a
(b)
1,(J�1)ccov

(b)(X)

a
(b)
2,1ccov

(b)(X) a
(b)
2,2ccov

(b)(X) · · · a
(b)
2,(J�1)ccov

(b)(X)
...

...
. . .

...

a
(b)
(J�1),1ccov

(b)(X) a
(b)
(J�1),2ccov

(b)(X) · · · a
(b)
(J�1),(J�1)ccov

(b)(X)

3

77775

=
sX

b=1

A
(b) ⌦ ccov(b)(X) 2 Rq⇥q

where A
(b) =

2

66664

a
(b)
1,1 a

(b)
1,2 · · · a

(b)
1,(J�1)

a
(b)
2,1 a

(b)
2,2 · · · a

(b)
2,(J�1)

...
...

. . .
...

a
(b)
(J�1),1 a

(b)
(J�1),2 · · · a

(b)
(J�1),(J�1)

3

77775
is a symmetric matrix of constant

multipliers specifically defined for each stratum, the ⌦ operator denotes the Kronecker

product, and q = p(J � 1) denotes the dimension of the parameter space.
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Appendix B

Technical Development of the Asymptotic
Distribution of T 2

B.1 Decomposition of the Hessian

Lemma B.1.1. Let H̃ denote �H(0) and let H̃ = UDU
T be an orthogonal eigen decom-

position of H̃ 2 Rq⇥q, where U is a q ⇥ q orthogonal matrix and D is a rank-r positive

semi-definite diagonal matrix. Let H� = UD
�
U

T denote the generalized inverse of H̃,

where

(D�)ii =

8
<

:
(Dii)�1

, Dii > 0

0, Dii = 0

Then H
� can be decomposed into H

� = (D̃� 1
2 Ũ

T )T (D̃� 1
2 Ũ

T ) for some full row rank

D̃
� 1

2 Ũ
T .

Proof. Let H̃ = UDU
T be an eigen decomposition of H̃ such that the r nonzero entries of

D are at the top-left r diagonal entries of D. That is, H̃T
H̃ = diag(d211, d

2
22, ..., d

2
rr, 0, ..., 0),

where d11, ..., drr > 0. Now consider the block representations of U and D

U =
h
Ũ
q⇥r

Ū
q⇥(q�r)

i
, D =

2

4
D̃
r⇥r

0
r⇥(q�r)

0
(q�r)⇥r

0
(q�r)⇥(q�r)

3

5

Obviously, H̃ = UDU
T = ŨD̃Ũ

T . And by the same reasoning, H� = ŨD̃
�1
Ũ

T .

Therefore, consider D̃� 1
2 Ũ

T , and it can be seen from the definition that this is a full

row rank matrix satisfying

(D̃� 1
2 Ũ

T )T (D̃� 1
2 Ũ

T ) = ŨD̃
� 1

2 D̃
� 1

2 Ũ
T = ŨD̃

�1
Ũ

T = H
�

Next we prove a useful lemma for the derivation of the limiting distribution of T 2. The

lemma allows us to express the dot product between D̃
� 1

2 Ũ
T
C̃z and any constant vector

as a sum over terms indexed by strata, and in particular, independent across strata, thus

admitting limiting behaviors as the strata size s ! 1.
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Lemma B.1.2. Let

s(0) =
h
s1(0)T | s2(0)T | · · · | sJ�1(0)T

iT

z =
h
zT1 | zT2 | · · · | zTJ�1

iT

be the stacked representations.

Let C ..=

2

64x1 x2 · · · xp

3

75�

2

6411 12 · · · 1s

3

75

2

66664

x1
(1)

x2
(1) · · · xp

(1)

x1
(2)

x2
(2) · · · xp

(2)

...
...

. . .
...

x1
(s)

x2
(s) · · · xp

(s)

3

77775
.

Equivalently, we write s(0) as s(0) = C̃z, where C̃ =

2

66664

C
T 0 · · · 0

0 C
T · · · 0

...
...

. . .
...

0 0 · · · C
T

3

77775
.

Let a 2 Rr be any vector. Then

1. 9 constant vectors k
(1)
, k

(2)
, . . . , k

(s) and z(1), z(2), . . . , z(s) as functions of z,

s.t. a
T
D̃

� 1
2 Ũ

T
C̃z =

Ps
b=1(k

(b))Tz(b), and furthermore,

2. var(aT D̃� 1
2 Ũ

T
C̃z) = a

T
a.

Proof. We now prove the first claim. Let a =
h
a1 a2 · · · ar

iT
2 Rr be arbitrary.

Define Q ..= D̃
� 1

2 Ũ
T
C̃, with row representation

Q =

2

66664

q
T
1

q
T
2
...

q
T
r

3

77775

Now by reordering rows of z into

z̃ =

2

66664

z(1)

z(2)

...

z(s)

3

77775

such that z(b), the b-th block of z̃, represents entries in z that belongs to the b-th stratum.
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Reorder the columns of Q accordingly, we obtain

Q̃ =

2

66664

(q(1)1 )T (q(2)1 )T · · · (q(s)1 )T

(q(1)2 )T (q(2)2 )T · · · (q(s)2 )T

...
...

. . .
...

(q(1)r )T (q(2)r )T · · · (q(s)r )T

3

77775

And note that by matrix multiplication rules Q̃z̃ = Qz.

We define k
(1)
, k

(2)
, . . . , k

(s) by k
(b) ..=

Pr
i=1 ai(q

(b)
i )T and observe

a
T
Q̃ =

h
(k(1))T (k(2))T · · · (k(s))T

i

Therefore, it follows that aT D̃� 1
2 Ũ

T
C̃z = a

T
Qz = a

T
Q̃z̃ =

Ps
b=1(k

(b))Tz(b).

The second claim follows from the following calculations

var(aT D̃� 1
2 Ũ

T
C̃z) = a

T
D̃

� 1
2 Ũ

T cov(C̃z)(D̃� 1
2 Ũ

T )Ta

= a
T
D̃

� 1
2 Ũ

T cov(s(0))ŨD̃
� 1

2a

= a
T
D̃

� 1
2 Ũ

T (�H(0))ŨD̃
� 1

2a

= a
T
D̃

� 1
2 Ũ

T
H̃ŨD̃

� 1
2a

= a
T
D̃

� 1
2 Ũ

T (ŨD̃Ũ
T )ŨD̃

� 1
2a

= a
T
D̃

� 1
2 D̃D̃

� 1
2a

= a
T
a

where the third inequality follows from a standard result in mathematical statistics.

We cite the following lemma from Billingsley 1986 as an important tool for our proof.

Lemma B.1.3 (Lindeberg’s Theorem). Let X1, X2, ..., Xs be independent random vari-

ables with finite variances. Denote E[Xb] = µb, var(Xb) = �
2
b , and ⌃2

s =
Ps

b=1 �
2
b .

Suppose for ✏ > 0,

lim
s!1

1

⌃2
s

sX

b=1

E
h
(Xb � µb)

2 · 1{|Xb � µb| > ✏⌃s}
i
= 0

then Ps
b=1 Xb � µb

⌃s

d! N(0, 1)
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B.2 Regularity Conditions and the Main Proof

We hereby state our regularity conditions.

Definition B.2.1 (Regularity Conditions). Define the following regularity conditions:

1. (Asymptotic in-stratum Similarity) 8✏ > 0, 9S 2 N s.t. 8s � S, we have

8b = 1, ..., s,max
i2I(b)

||x̃i|| < ✏

where x̃i =
h
xi1 xi2 ... xip

iT
�
h
x1

(b)
x2

(b)
... xp

(b)
iT

is the strata-mean cen-

tered data vector for the i-th subject.

2. (Rank Stability) 9S 2 N, 9r 2 N s.t. 8s � S, rank(H(0)) = r.

3. (Hessian Stability) 9M > 0 s.t. 8s 2 N, 8u 2 Rr s.t. ||u|| = 1, we have

||uT
D

� 1
2

s Ũ
T
s || < M

where the subscript s in D
� 1

2
s , Ũ

T
s is meant to refer to these quantities for each

particular s.

4. (Bounded Strata Sizes) 9N 2 N s.t. 8s 2 N, maxb=1,...,s nb < N

Remark B.2.1. The conditions 1 can be interpreted as follows under a matching setting:

as the total number of strata (sample) increase, we are matching over a larger pool of

subjects, which makes it easier to find groups of high similarity.

Remark B.2.2. The conditions 2 & 3, although do not appear practically meaningful,

are easily satisfied if H(0) ! H0 for some H0, which is in turn a statistically meaningful

yet stronger assumption.
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Proposition B.2.1. Suppose the regularity conditions in Definition B.2.1 hold. Then

for a 2 Rr,

a
T
Qz

d! a
T
X, where X ⇠ Nr(0, Ir)

Proof. For any strata size s 2 N, we define the familiar notations that

Cs
..=

2

64x1 x2 · · · xp

3

75�

2

6411 12 · · · 1s

3

75

2

66664

x1
(1)

x2
(1) · · · xp

(1)

x1
(2)

x2
(2) · · · xp

(2)

...
...

. . .
...

x1
(s)

x2
(s) · · · xp

(s)

3

77775
, C̃s

..=

2

66664

C
T
s 0 · · · 0

0 C
T
s · · · 0

...
...

. . .
...

0 0 · · · C
T
s

3

77775

We may consider the following column representation of CT
s :

C
T
s =

2

64x̃1 · · · x̃n

3

75 , x̃i =

2

66664

xi1 � x1
(b)

xi2 � x2
(b)

...

xip � xp
(b)

3

77775
where i 2 I(b)

That is, the transpose of the strata-mean centered data matrix can be represented column-

wise where each column is the strata-mean centered data vector for an observation.

Now, consider the strata-based reordering of the columns of C̃s into C̄s and the cor-

responding reordering of rows of z into z̃:

C̄s =
h
C

(1)
s · · · C

(b)
s · · · C

(s)
s

i
, where C(b)

s =

2

66664

x̃(b)
1 · · · x̃(b)

nb 0 · · · 0

0 x̃(b)
1 · · · x̃(b)

nb · · · 0
...

...
. . . 0

0 0 · · · x̃(b)
1 · · · x̃(b)

nb

3

77775

and

z̃ =

2

66664

z(1)

z(2)

...

z(s)

3

77775
, where z(b) =

2

66664

z(b)1

z(b)2
...

z(b)J�1

3

77775
, where z(b)j =

2

66664

1{Y (b)
1  j}

1{Y (b)
2  j}
...

1{Y (b)
nb  j}

3

77775

where we introduced the notation (·)(b)i , i = 1, ..., nb to denote a quantity that belongs to

the i-th observation of the b-th stratum. For example, x̃(b)
i is the centered data vector for

the i-th observation in stratum b, and 1{Y (b)
i  j} is the treatment indicator for the i-th

observation in stratum b.
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Then we make the following observations:

C̃sz = C̄sz̃ =
sX

b=1

C
(b)
s z(b), where C

(b)
s z(b) =

2

6666664

h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)1h

x̃(b)
1 · · · x̃(b)

nb

i
z(b)2

...h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)J�1

3

7777775

whereas

E[C(b)
s z(b)] =

2

6666664

h
x̃(b)
1 · · · x̃(b)

nb

i
E[z(b)1 ]

h
x̃(b)
1 · · · x̃(b)

nb

i
E[z(b)2 ]

...h
x̃(b)
1 · · · x̃(b)

nb

i
E[z(b)J�1]

3

7777775
=

2

6666664

h
x̃(b)
1 · · · x̃(b)

nb

i
c1b
nb
1

h
x̃(b)
1 · · · x̃(b)

nb

i
c2b
nb
1

...h
x̃(b)
1 · · · x̃(b)

nb

i
c(J�1)b

nb
1

3

7777775
= 0

and the last equality is because the columns of
h
x̃(b)
1 · · · x̃(b)

nb

i
are mean-centered.

And due to conditioning on {Cjb = cjb}, j = 1, ..., J � 1, b = 1, ..., s,

1T

1⇥nb

z(b)j = cjb

Then, let a 2 Rr be arbitrary. To show

a
T
Qz

d! a
T
X, where X ⇠ Nr(0, Ir)

it su�ces to check the Lindeberg’s condition.

Now, fix arbitrary ✏ > 0, and according to Hessian Stability in Definition B.2.1, fix

M > 0 s.t. 8k 2 N, 8u 2 Rr s.t. ||u|| = 1, M satisfies

||uT
D

� 1
2

k Ũ
T
k || < M

Now, this implies for u = a
||a|| 2 Rr, M satisfies

||uT
D

� 1
2

s Ũ
T
s || < M

Furthermore, by the Asymptotic in-stratum Similarity and the boundedness of strata

sizes in Definition B.2.1, we may fix S 2 N s.t. 8s � S, we have

8b = 1, ..., s,max
i2I(b)

||x̃i|| < ✏ · (M(J � 1)N)�1
< ✏ · (M(J � 1)max

j,b
cjb)

�1
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Then by C(b)
s z(b) =

2

6666664

h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)1h

x̃(b)
1 · · · x̃(b)

nb

i
z(b)2

...h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)J�1

3

7777775
and

||
h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)1 || < (maxi2I(b) ||x̃i||)c1b

||
h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)2 || < (maxi2I(b) ||x̃i||)c2b

...

||
h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)J�1|| < (maxi2I(b) ||x̃i||)c(J�1)b

,

we conclude that 8b = 1, ..., s,

||C(b)
s z(b)|| 

J�1X

j=1

||
h
x̃(b)
1 · · · x̃(b)

nb

i
z(b)j || <

J�1X

j=1

(max
i2I(b)

||x̃i||)cjb <
J�1X

j=1

✏ · [M(J � 1)]�1 = ✏/M

Therefore, 8s � S, 8b = 1, ..., s,

P[||C(b)
s z(b)|| > ✏/M ] = 0

=) P[M · ||C(b)
s z(b)|| > ✏] = 0

=) P[||uT
D

� 1
2

s Ũ
T
s || · ||C(b)

s z(b)|| > ✏] = 0, where u =
a

||a||

=) P[||aTD� 1
2

s Ũ
T
s || · ||C(b)

s z(b)|| > ||a|| · ✏] = 0

=) P[||aTD� 1
2

s Ũ
T
s C

(b)
s z(b)|| > ||a|| · ✏] = 0

=) P[||(k(b))Tz(b)|| > ||a|| · ✏] = 0

where the last implication holds if we admit the following decomposition from Lemma

B.1.2:

a
T
D̃

� 1
2

s Ũ
T
s C̄sz̃ = a

T
D̃

� 1
2

s Ũ
T
s C̃sz =

sX

b=1

(k(b))Tz(b)

And therefore,

8s � S,

sX

b=1

E
h
[(k(b))Tz(b)]2 · 1{|(k(b))Tz(b)| > ||a|| · ✏}

i
= 0

=) lim
s!1

sX

b=1

E
h
[(k(b))Tz(b)]2 · 1{|(k(b))Tz(b)| > ||a|| · ✏}

i
= 0

But
Ps

b=1 var((k
(b))Tz(b)) = a

T
a = ||a||2, and E[(k(b))Tz(b))] = 0, and the Lindeberg

Theorem’s implies

1

||a||

sX

b=1

(k(b))Tz(b)
d! N(0, 1)

=) a
T
D̃

� 1
2

s Ũ
T
s C̃sz =

sX

b=1

(k(b))Tz(b)
d! N(0, aTa)
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To finalize the proof of the �
2
r distribution of T 2, we introduce the following lemma

(Billingsley 1986).

Lemma B.2.1 (Cramér-Wold Device). For random vectors Xn = (Xn1, ..., Xnk) and

Y = (Y1, ..., Yk), a necessary and su�cient condition for Xn
d! Y is that tTXn

d! t
T
Y

for each t = (t1, ..., tk) in Rk.

This allows us to state the following conclusions as final pieces of the proof.

Corollary B.2.1. Suppose the regularity conditions in Definition B.2.1 hold, then

Qz
d! Nr(0, Ir)

Proof. By B.2.1 and B.2.1

Corollary B.2.2. Suppose the regularity conditions in Definition B.2.1 hold, then

T
2 d! �

2
r

Proof.

T
2 = s(0)T (�H(0))s(0)

= s(0)T H̃s(0)

= s(0)T (UDU
T )s(0)

= s(0)T (ŨD̃
� 1

2 D̃
� 1

2 Ũ
T )s(0)

= zT C̃T (ŨD̃
� 1

2 D̃
� 1

2 Ũ
T )C̃z

= (zT C̃T
ŨD̃

� 1
2 )(D̃� 1

2 Ũ
T
C̃z)

= (Qz)T (Qz)
d! �

2
r
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