Yiling Huang

yilingh@umich.edu - (734) 450-6430

EDUCATION

University of Michigan-Ann Arbor

Ann Arbor, MI

Ph.D. in Statistics

Expected May 2027

• GPA: N/A

• Research interests: statistical learning; selective inference; causal inference; interpretable learning algorithms

University of Michigan-Ann Arbor

Ann Arbor, MI

B.S. with Highest Honors in Statistics; B.S. in Mathematics (Pure Math Program)

May 2022

• GPA: 3.98, James B. Angell Scholar & University Honors

• Honors Thesis Title: "Balance Assessment of Matched Data with Multiple Treatment Levels" Link

University of Rochester

Rochester, NY

First-year Student with Focus in Statistics

September 2018 – May 2019

• GPA: 4.00, Dean's List

HONORS & AWARDS

Best Undergrad. Presentation, Michigan Student Symposium for Interdisciplinary Statistical Sciences Outstanding Achievement in Mathematics Award, Dep. of Mathematics, Univ. of Michigan March 2022 April 2022

RESEARCH EXPERIENCES

Department of Statistics, University of Michigan

Ann Arbor, MI

Undergraduate Researcher (Supervised by Prof. Snigdha Panigrahi)

May 2021 – Present

- (*In progress*) provide post-selection inference for sparse graphical models applicable to Gaussian data, and reviewed literature on recent advances in selective inference
- Derived characterizations of the randomized paired group lasso's model selection event, and extended the results to derive the likelihood of the statistical pivot conditioning on the model selection event
- Implemented a randomized paired group lasso algorithm that estimates sparse precision matrices of multivariate Gaussian data

Department of Statistics, University of Michigan

Ann Arbor, MI

Undergraduate Researcher & Honors Thesis (Supervised by Dr. Mark Fredrickson)

January 2021 – Present

- Developed a hypothesis test that assesses covariate balance of matched (grouped) datasets with multilevel treatments, especially observational data that are matched using propensity score-based methods
- Adopted the adjacent category logistic regression model to represent treatment assignment probabilities, and tested the validity of matching results by testing the equivalent formulation that all slope parameters equal zero
- Derived exact expressions of the test statistic after accounting for stratification information via conditioning on strata-based statistics, and conducted simulations to evaluate operating characteristics of the test

Department of Statistics, University of Michigan

Ann Arbor, MI

Undergraduate Researcher (Supervised by Prof. Kerby Shedden) Link to Report

September 2021 – Present

- Provided statistical methods for the analysis of time-series, dyadic clinical data by designing a optimization problem that aims to combine the strength of PCA and CCA
- Implemented several gradient-based optimization algorithms, including BFGS, to solve the optimization problem
- Experimented on simulated data to confirm the proposed method successfully reconciles PCA with CCA

Yang Zhang Lab, University of Michigan

Ann Arbor, MI

Research Assistant

March 2020 - May 2021

- Implemented optimization algorithms including differential evolution (DE) and grid search to optimize parameters of a bioinformatics predictive model that predicts protein structures
- Extracted features from protein sequential data with C++ programs
- Studied multiple bioinformatics journal papers that perform protein structure prediction using deep learning and optimization algorithms, and proposed feasible improvements or alternatives as future research directions

PROJECTS

Regression Analysis (STATS600, Ph.D. level, individual work) Link to Report

- Conducted regression analysis on high-dimensional human gene expression level data to detect genes highly associated with cancer severity; deployed the LASSO for variable selection
- Proposed a method to obtain an *a posteriori* modeling assumption for linear regression models; performed simulations to conclude that the method yields confidence intervals of proper length and coverage
- Applied variable selection and statistical inference separately using two-fold sample-splitting to avoid invalid postselection inference

PROJECTS (CONTINUED)

Statistical Learning (STATS601, Ph.D. level, group work) Link to Report

- Implemented statistical/machine learning algorithms to make predictions about whether the card owners will abandon a specific credit card service based on their consumption and demographic features
- Compared the performance of linear models, tree-based models, and neural nets on the credit card dataset
- Contributed the idea of training learning algorithms separately by cluster to learn heterogeneous patterns on each cluster of data, and the writing and implementation of relevant parts (sections 1-3, 6-8, 10, and 11) of the report

Computational Methods in Statistics and Data Science (STATS406, individual work) Link to Report

- Implemented density estimation algorithms to estimate the total variance distance (TVD), proposed the usage of this quantity as a test statistic for permutation tests, and compared its performance to other statistics
- Performed permutation tests to quantify the distributional differences between the abilities of soccer players from different countries
- Generated bootstrapped confidence intervals for the parameters of a random effects linear model that aims to explain player abilities by individual-level and country-level covariates

TALKS & PRESENTATIONS

Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS)

March 2021

• Balance Assessment of Matched Data with Multiple Treatment Levels (link to poster)

American Causal Inference Conference (ACIC)

May 2021

• Balance Assessment of Matched Data with Multiple Treatment Levels (link to poster)

WORK EXPERIENCE

Department of Mathematics, University of Michigan

Ann Arbor, MI

Grader for Advanced Calculus I

September 2021 – Present

- Graded homework for two sections with a total of 50 students and produced answers to all problem sets
- Selected a set of proof-based problems from the instructor's assigned lists as homework problems
- Designed the grading scale for each problem based on the specific structure of valid proofs

COURSEWORK

Graduate Courses at the University of Michigan:

• Regression Analysis (A; Ph.D. level), Statistical Learning (A; Ph.D. level), Linear Programming (A; master level), Statistical Inference (A; master level)

Undergraduate Courses at the University of Michigan:

- Linear Algebra (A), Advanced Calculus I (A+; mathematical analysis), Probability Theory (A+, weakly measure-theoretic), Introduction to Modern Algebra (A+), ODE (A), Point-set Topology (A+), Real Analysis (A+), Combinatorics (A+)
- Introduction to Theoretical Statistics (A+), Data Mining and Statistical Learning (A+), Bayesian Data Analysis (A), Applied Regression Analysis (A+), Computational Methods in Statistics and Data Science (A)
- Data Structure (A; in C++)

Undergraduate Courses at the University of Rochester:

- Multivariable Calculus (A), Introduction to Probability (A), Discrete Mathematics (A)
- Introduction to Categorical Data Analysis (A)

SKILLS

- Languages: Chinese (native), English (fluent)
- Technology: Data analysis, processing, and visualization in R and Python; OOP programming in Java, C++, and Python; MATLAB programming; typesetting in LaTeX; Final Cut Pro
- Leadership: Captain of the delegation team of Capital Normal University High School (CNU-HS) for BGBC, one of Beijing's citywide high school soccer championships in 2018